

FDK Reference Manual: Agilent Acqiris Analyzers / Streamer Analyzers

FDK REFERENCE MANUAL

AGILENT ACQIRIS
ANALYZERS / STREAMER ANALYZERS

Models covered:

U1080A

AC240/AC210

SC240/SC210

FDK Reference Manual Page 2 of 165

Manual Part Number

U1092U1092U1092U1092----90010900109001090010

Edition

C-RevA, November 2007

The information in this document is subject to change without notice and may not be construed in

any way as a commitment by Agilent Technologies, Inc. While Agilent makes every effort to ensure

the accuracy and contents of the document it assumes no responsibility for any errors that may

appear.

All software described in the document is furnished under license. The software may only be used

and copied in accordance with the terms of license. Instrumentation firmware is thoroughly tested

and thought to be functional but it is supplied “as is” with no warranty for specified performance. No

responsibility is assumed for the use or the reliability of software, firmware or any equipment that is

not supplied by Agilent or its affiliated companies.

You can download the latest version of this manual from http://www.agilent.com/ by clicking on

Manuals in the Technical Support section and then entering a model number. You can also visit our

web site at

http://www.agilent.com/find/acqiris. At Agilent we appreciate and encourage customer input. If you

have a suggestion related to the content of this manual or the presentation of information, please

contact your local Agilent Acqiris product line representative or the dedicated Agilent Acqiris

Technical Support (ACQIRIS_SUPPORT@agilent.com).

Acqiris Product Line Information

USA (845) 782-6544

Asia - Pacific 61 3 9210 2890

Europe 41 (22) 884 32 90

© Copyright Agilent 2007

FDK Reference Manual Page 3 of 165

CONTENTS

1. INTRODUCTION..10
1.1 Message to the User..10
1.2 Using this Manual...10
1.3 Conventions Used in This Manual: ..11
1.4 Warning Regarding Medical Use ...11
1.5 Warranty...11
1.6 Warranty and Repair Return Procedure, Assistance, and Support..11
1.7 System Requirements ...11

2. INSTALLATION ...12
2.1 Preliminary Remarks ..12
2.2 Installation Types ...12
2.3 FDK Installation ...12
2.4 Checking Your Installation...12
2.5 Recommendations on Beginning a New Design ..12

3. FDK OVERVIEW ..13
3.1 The FPGA Cores ..13
3.2 Base Designs ..13
3.3 Reference Designs ..13
3.4 The FPGA Design Tools ..13
3.5 The Acqiris Test Bench ..13
3.6 The .bit File Header ..13
3.7 Overview of the FPGA Core Structure...14
3.8 Accessing Registers and Memories ..14

4. OVERVIEW OF THE DATA PROCESSING UNIT ...15
4.1 Digitizer..15
4.2 Data Processing Unit (DPU)...15

4.2.1 The FPGA – XC2VP70-6...15
4.2.2 DPU Clocking Resources ...16

4.3 Understanding DMA Transfers ..17
4.4 Local Bus..17

4.4.1 Local Bus Address..17
4.4.2 Local Bus Signals ...18
4.4.3 Local Bus Timing ...19

4.5 Internal Bus ..19
4.5.1 Extension of the Internal Bus Addressing Space..19
4.5.2 List of Internal Bus Signals ..20
4.5.3 Internal Bus Address for the Direct Access Registers ..21
4.5.4 Internal Bus Address for the Indirect Data Port..21
4.5.5 Direct Access..22
4.5.6 Indirect Access Write ...22
4.5.7 Indirect Access Read ..23
4.5.8 Multi Target Connection ..24

5. BASE DESIGN ...26
5.1 Multiple Base Designs..26
5.2 Bitfile name for the Base Design..26
5.3 Overview of the Base Designs..27

5.3.1 AC210 Base Design..27
5.3.2 Trigger accuracy versus Sampling Rate ...27

5.4 AC240 Base Design ...27
5.4.1 Architecture ..27
5.4.2 Trigger accuracy versus Sampling Rate ...28

5.5 SC240 Base Design ..28
5.5.1 Architecture of the Base Streaming Firmware..28

FDK Reference Manual Page 4 of 165

5.5.2 Trigger Positioning Resolution versus Sampling Rate...29
5.5.3 Trigger Time Stamp..30
5.5.4 Front Panel LED Status ..30

5.6 List of Cores Instantiated in Base Designs ...30
5.7 Register List in Base Designs ...31
5.8 Indirect Addressing in AC2x0 Base Designs ...33
5.9 Indirect Addressing in SC2x0 Base Designs ..33
5.10 Simulation ..34
5.11 Constraints..34
5.12 Interrupt Control ...35
5.13 Resource Utilization ...35
5.14 Version History ..36

6. FDK CORE LIBRARY..37
6.1 Index of Available Cores..37
6.2 Base Clock Manager...38

6.2.1 Functional Description ...38
6.2.2 Port Description..38
6.2.3 DCM Location Constraints...39
6.2.4 BUFG Location Constraints ...40
6.2.5 Area Restrictions ..40
6.2.6 Clock Period Constraints ..41
6.2.7 Resource Utilization ...41
6.2.8 Version History ..41

6.3 Memory Option Clock Manager...43
6.3.1 Functional Description ...43
6.3.2 Port Description..43
6.3.3 DCM Location Constraints...45
6.3.4 BUFG Location Constraints ...45
6.3.5 Area Restrictions ..46
6.3.6 Clock Period Constraints ..46
6.3.7 Resource Utilization ...46
6.3.8 Version History ..47

6.4 Streamer Clock Manager ..48
6.4.1 Port Description..48
6.4.2 DCM Location Constraints...49
6.4.3 BUFG Location Constraints ...49
6.4.4 Area Restrictions ..50
6.4.5 Clock Period Constraints ..51
6.4.6 Resource Utilization ...51
6.4.7 Version History ..51

6.5 User Block Skeleton ...52
6.5.1 Port Description..52
6.5.2 Version History ..53

6.6 User Block Example...54
6.6.1 Functional Description ...54
6.6.2 Port Description..54
6.6.3 Registers ...55

6.6.3.1 User Control Register.. 55
6.6.3.2 User Status Register .. 56

6.6.4 Accessing the IN-Buffer ...56
6.6.4.1 IN-Buffer... 56

6.6.5 Resource Utilization ...56
6.6.6 Version History ..56

6.7 Local Bus Interface...57
6.7.1 Functional Description ...57
6.7.2 Instantiation ..57
6.7.3 Port Description..58

FDK Reference Manual Page 5 of 165

6.7.4 Access Time Out ..60
6.7.5 Protection of Firmware Code..60
6.7.6 Registers ...60

6.7.6.1 Overview... 60
6.7.6.2 Indirect Access Port... 60
6.7.6.3 Indirect Address Register .. 60
6.7.6.4 Buffer Identifier Register .. 61
6.7.6.5 Code Protection Register... 61
6.7.6.6 Direct Access Block Register .. 61

6.7.7 Constraints..62
6.7.8 Resource Utilization ...62
6.7.9 Version History ..62

6.8 DE Interface for 1 and 2 Channels ...63
6.8.1 Functional Description ...63
6.8.2 Instantiation ..63
6.8.3 Port Description..64
6.8.4 Output Stream Bus..65

6.8.4.1 Data Source and Ordering ... 66
6.8.4.2 ADC Code Correspondence .. 66

6.8.5 Registers ...66
6.8.5.1 DEControl Register ... 66
6.8.5.2 DE_Buffer Operating Mode.. 68

6.8.6 Accessing the DE-Buffer..68
6.8.6.1 DE-Buffer.. 68

6.8.7 Constraints..68
6.8.8 Resource Utilization ...69
6.8.9 Version History ..69

6.9 DE Interface for SC240 and High Resolution Trigger ...70
6.9.1 Instantiation ..70
6.9.2 Port Description..70
6.9.3 Version History ..71

6.10 Trigger Manager ...72
6.10.1 Functional Description ...72
6.10.2 Port Description..72
6.10.3 Trigger and Trigger Accept Circuit ..73
6.10.4 Trigger Control Timing Diagram ...73
6.10.5 Constraints..73
6.10.6 Resource Utilization ...73
6.10.7 Version History ..74

6.11 High Resolution Trigger Manager..75
6.11.1 Functional Description ...75
6.11.2 Port Description..75
6.11.3 Registers ...76

6.11.3.1 Trigger Control Register ... 76
6.11.3.2 Trigger Status Lo .. 77
6.11.3.3 Trigger Status Hi... 77
6.11.3.4 Trigger Delay.. 78

6.11.4 Constraints..78
6.11.5 Resource Utilization ...78
6.11.6 Version History ..78

6.12 Acqiris Register ..79
6.12.1 Functional Description ...79
6.12.2 Port Description..79
6.12.3 Registers ...80

6.12.3.1 AcqirisPrivateControl Register ... 80
6.12.3.2 AcqirisControl Register .. 80
6.12.3.3 AcqirisStatus Register... 80

6.12.4 Constraints..81

FDK Reference Manual Page 6 of 165

6.12.5 Resource Utilization ...81
6.12.6 Version History ..81

6.13 LED Interface ...82
6.13.1 Functional Description ...82
6.13.2 Port Description..82
6.13.3 Detailed Description ...82
6.13.4 Register...83

6.13.4.1 LED Control ... 83
6.13.5 Constraints..83
6.13.6 Resource Utilization ...83
6.13.7 Version History ..83

6.14 PIO Interface ..84
6.14.1 Functional Description ...84
6.14.2 Port Description..84
6.14.3 Detailed Description ...84
6.14.4 Register...85

6.14.4.1 PIO Control... 85
6.14.5 Instantiation ..86
6.14.6 Constraints..86
6.14.7 Resource Utilization ...86
6.14.8 Version History ..86

6.15 Temperature Interface...87
6.15.1 Functional Description ...87
6.15.2 Port Description..87
6.15.3 Detailed Description ...87
6.15.4 Register...87

6.15.4.1 TempMonitor .. 87
6.15.5 Constraints..88
6.15.6 Resource Utilization ...88
6.15.7 Version History ..88

6.16 DAC Interface ..89
6.16.1 Functional Description ...89
6.16.2 Port Description..89
6.16.3 Detailed Description ...89
6.16.4 Register...90

6.16.4.1 DAC Control... 90
6.16.5 Constraints..91
6.16.6 Resource Utilization ...91
6.16.7 Version History ..91

6.17 Dlink Interface..92
6.17.1 Functional Description ...92
6.17.2 Port Description..92
6.17.3 Detailed Description ...92
6.17.4 Registers ...93

6.17.4.1 Dlink_Control ... 93
6.17.4.2 Dlink_Dout Register ... 93
6.17.4.3 DLink_Din Register.. 93

6.17.5 Instantiation ..94
6.17.6 Constraints..94
6.17.7 Resource Utilization ...94
6.17.8 Version History ..94

6.18 Dual Port Memory Interface...95
6.18.1 Functional Description ...95

6.18.1.1 User Port ... 95
6.18.1.2 Internal Bus Port ... 95
6.18.1.3 Self-Testing... 95

6.18.2 Instantiation ..96
6.18.3 Port Description..96

FDK Reference Manual Page 7 of 165

6.18.4 User Port Timing Diagram ...98
6.18.5 Registers ...98

6.18.5.1 DP_Control ... 98
6.18.5.2 DP_TestPatternControl ... 99
6.18.5.3 DP_Status ... 99
6.18.5.4 DP_TestValue... 99
6.18.5.5 DP_TestResult .. 99

6.18.6 Accessing the Dual Port Memory...100
6.18.6.1 DPMemory ... 100

6.18.7 Constraints..100
6.18.8 Resource Utilization ...100
6.18.9 Version History ..100

6.19 Dual Port Memory Control Example..101
6.19.1 Port Description..101
6.19.2 Registers ...102

6.19.2.1 Control Register.. 102
6.19.3 Resource Utilization ...102
6.19.4 Version History ..102

6.20 Serial Front Panel Data Port Controller ..103
6.20.1 Functional Description ...103
6.20.2 Port Description..103
6.20.3 Detailed Description ...105

6.20.3.1 TX Controller.. 105
6.20.3.2 RX Controller ... 106
6.20.3.3 TX and RX Local Links.. 107
6.20.3.4 Clocking.. 108
6.20.3.5 Throughput Monitoring .. 108
6.20.3.6 Generic Parameters ... 109

6.20.4 Register...109
6.20.4.1 SLC Control Register.. 109
6.20.4.2 SLC Status Register .. 110
6.20.4.3 SLC Signal Register.. 111

6.20.5 Instantiation ..111
6.20.6 Constraints..112
6.20.7 Resource Utilization ...112
6.20.8 Version History ..112

6.21 DDR Memory Interface..113
6.21.1 Functional Description ...113

6.21.1.1 Initialization.. 113
6.21.1.2 Minimum Number of Transfers .. 114
6.21.1.3 Read Access Time... 114
6.21.1.4 Port Selection.. 114
6.21.1.5 User Port ... 114
6.21.1.6 Internal Bus Port ... 114
6.21.1.7 Internal Bus Port Address versus User Port Address .. 115
6.21.1.8 DDR SDRAM Clock Structure... 115
6.21.1.9 Self-Test.. 115

6.21.2 Instantiation ..115
6.21.3 Port Description..115
6.21.4 User Port Timing Diagrams: Burst write and Single write ...117
6.21.5 User Port Timing Diagrams: Burst read ...117
6.21.6 User Port Timing Diagrams: Single Read ..118
6.21.7 Registers ...118

6.21.7.1 DDRControl.. 118
6.21.7.2 DDRStatus .. 119
6.21.7.3 DDRTestControl... 120
6.21.7.4 DDRTestStatus ... 120
6.21.7.5 DDRTestData0.. 121

FDK Reference Manual Page 8 of 165

6.21.7.6 DDRTestData1.. 121
6.21.7.7 DDRTestData2.. 121
6.21.7.8 DDRTestData3.. 122
6.21.7.9 DDRTestCounter .. 122
6.21.7.10 DDRClockControl .. 122
6.21.7.11 DDRClockStatus... 123

6.21.8 Accessing the DDR SDRAM Memory...123
6.21.8.1 DDR A -memory .. 123
6.21.8.2 DDR B –memory .. 123

6.21.9 Constraints..124
6.21.10 Resource Utilization ...124
6.21.11 Version History...124

6.22 DDR Memory Control Example...125
6.22.1 Port Description..125
6.22.2 Registers ...125

6.22.2.1 DDREControl ... 125
6.22.2.2 DDREStatus.. 126

6.22.3 Resource Utilization ...126
6.22.4 Version History ..126

6.23 Base Streamer Example..127
6.23.1 Framing Sequence Flow Chart ...128
6.23.2 Raw Data Frame ...128
6.23.3 Accumulated Data Frame ...128
6.23.4 Parameter Data Frame ..129
6.23.5 Port Description..129
6.23.6 Registers ...130

6.23.6.1 Main Control Register... 130
6.23.6.2 TX-Monitor Buffer Control and Status... 131
6.23.6.3 RX-Monitor Buffer Control and Status... 131
6.23.6.4 Base Streamer Configuration Register .. 132

6.23.7 Resource Utilization ...132
6.23.8 Version History ..132

7. VHDL TEST BENCH ..133
7.1 Overview ..133
7.2 VHDL Generic of the Tester Component...134
7.3 Script Command Syntax...134

7.3.1 Lexical Grammar..134
7.3.2 Syntaxical Grammar ...135
7.3.3 Description of the two grammars..135
7.3.4 Special rules..135
7.3.5 Data files...135

7.4 Script Commands ...136
7.4.1 Creating Groups: BG / EG..136
7.4.2 Displaying Comments: LL ...136
7.4.3 Report Control Command...137
7.4.4 Defining a Numeric Constant: DC ...137
7.4.5 Defining a String Constant: DF ..138
7.4.6 Executing a Script: EF..138
7.4.7 Run the Simulator: RUN ..138
7.4.8 Writing to Local Bus: CWx..139
7.4.9 Reading from Local Bus: CRx ...140
7.4.10 Writing to Internal Bus: IWx..140
7.4.11 Reading From Internal Bus: IRx...142
7.4.12 Clock Generation: CKx ..143
7.4.13 Probe Interface: WP..143
7.4.14 Data Stream Generation: MACF ..144

7.5 Version History ..144
8. DESIGN FLOW ...145

FDK Reference Manual Page 9 of 165

8.1 Standard Tools..145
8.2 Design Flow with HdlDesigner ..146

8.2.1 Block Diagram..146
8.2.2 Directory Structure of the FDK Installation ...147

8.2.2.1 HdlDesigner SideData... 148
8.2.2.2 HdlDesigner SideData Directory... 148

8.2.3 Configuring HdlDesigner ...148
8.2.3.1 Acqiris Team and User Preferences .. 148
8.2.3.2 Project File / Library Mapping .. 148

8.2.4 Simulation with Modelsim ...149
8.2.5 Synthesis with Precision Synthesis...149
8.2.6 Synthesis with XST (ISE)...151
8.2.7 Implementation with ISE..151

8.3 Design Flow without HdlDesigner ...151
8.3.1 Block Diagram..151
8.3.2 Simulation with Modelsim ...152
8.3.3 Synthesis with Precision Synthesis...152

8.4 Design Implementation with ISE..152
8.4.1 Cores Directory ..153
8.4.2 Synthesis with XST (ISE)...153
8.4.3 Property Settings for ISE-XST ...153
8.4.4 Properties Settings for ISE-Translate ...155
8.4.5 Properties Settings for ISE-Map...155
8.4.6 Properties Settings for ISE-Place and Route ..156
8.4.7 Properties Settings for ISE-Bit file Generation ..156

8.5 ChipScope ..157
8.6 FPGALook ...157
8.7 Version History ..157

9. VHDL LIBRARIES ...158
9.1 Delivered Libraries ...158
9.2 Xilinx Libraries ..158

9.2.1 HdlDesigner Library Mapping ...158
9.2.2 Installing the Xilinx Libraries...158
9.2.3 Compiling the Xilinx VHDL Libraries...159

9.3 Library ac240_developer_lib..160
9.3.1 Key Components and Files...161

9.4 Library ac240_fdk ..162
9.4.1 Key Components and Files...163

9.5 Library fdk_lib..163
9.6 Library fdk_lib_h..164
9.7 library std_lib..164
9.8 Library acq_lib ...164
9.9 Library std_xilinx ...165
9.10 Library cypress ...165
9.11 Library samsung_ddr..165
9.12 Library ddr_ctrl_virtex2 ...165
9.13 Version History ..165

FDK Reference Manual Page 10 of 165

1. Introduction
1.1 Message to the User

Congratulations on having purchased an Agilent Technologies Acqiris data conversion product. Acqiris
Analyzers and Stream Analyzers are high-speed data acquisition modules designed for capturing high
frequency electronic signals. To get the most out of the products we recommend that you read the
accompanying product User Manual, the Programmer’s Guide, the Programmer’s Reference Manual, and
this Firmware Development Kit (FDK) Reference Manual carefully. We trust that the product you have
purchased as well as the accompanying software will meet with your expectations and provide you with a
high quality solution to your data conversion applications.

1.2 Using this Manual
This guide assumes you are familiar with the operation of a personal computer (PC) running a Windows
95/98/2000/NT4/XP or other supported operating system. In addition you ought to be familiar with the
fundamentals of the programming environment that you will be using to control your Acqiris product. It
also assumes you have a good understanding of Field Programmable Gate Array (FPGA) use and basic
understanding of the principles of data acquisition using either a waveform digitizer or a digital
oscilloscope.

The User Manual that you also have received (or have access to) has important and detailed instructions
concerning your Acqiris product. You should consult it first. You will find the following chapters there:

Chapter 1 OUT OF THE BOX, describes what to do when you first receive your new Acqiris
product. Special attention should be paid to sections on safety, packaging, and product
handling. Before installing your product please ensure that your system configuration
matches or exceeds the requirements specified.

Chapter 2 INSTALLATION , covers all elements of installation and performance verification.
Before attempting to use your Acqiris product for actual measurements we strongly
recommend that you read all sections of this chapter.

Chapter 3 PRODUCT DESCRIPTION, provides a full description of all the functional elements
of your product.

Chapter 4 FIRMWARE, describes the major elements of firmware supplied, as standard or as an
option.

Chapter 5 RUNNING THE AcqirisANALYZERS APPLICATION, describes the operation of this
basic application which allows you to exercise the capabilities of the analyzer.

Chapter 6 PROGRAMMING THE FIRMWARE, first describes programming aspects that are
common to all applications. The second part contains sections that are applicable to
specific firmware applications. They are marked as such.

The Programmer’s Guide is divided into 4 separate sections.

Chapter 1 INTRODUCTION, describes what can be found where in the documentation and how
to use it.

Chapter 2 PROGRAMMING ENVIRONMENTS & GETTING STARTED, provides a
description for programming applications using a variety of software products and
development environments.

Chapter 3 PROGRAMMING AN ACQIRIS DIGITIZER, provides information on using the
device driver functions to operate an Acqiris digitizer.

The Programmer’s Reference manual is divided into 2 sections.

Chapter 1 INTRODUCTION, describes what can be found where in the documentation and how
to use it.

Chapter 2 DEVICE DRIVER FUNCTION REFERENCE, contains a full device driver function
reference. This documents the traditional Application Program Interface (API) as it can
be used in the following environments:

LabWindowsCVI, Visual C++, LabVIEW, MATLAB, Visual Basic, Visual Basic
.NET.

This FDK Reference manual is a central document for anyone attempting to implement new
functionality in the Data Processing Unit of an Analyzer or Streamer Analyzer. It is platform dependent
and contains all information leading to a complete custom FPGA firmware design. It is recommended that
you read it in its entirety before starting to design. It is divided into 9 separate sections.

FDK Reference Manual Page 11 of 165

Chapter 1 INTRODUCTION, describes what can be found where in this documentation and how
to use it.

Chapter 2 INSTALLATION , describes the installation of the FDK and the configuration of the
computer.

Chapter 3 FDK OVERVIEW, provides basic information on the FDK environment.

Chapter 4 OVERVIEW OF THE DATA PROCESSING Unit, gives details on the hardware
functions associated with the FPGA.

Chapter 5 BASE DESIGN, describes the Base Design examples.

Chapter 6 FDK CORE LIBRARY, describes the available cores.

Chapter 7 VHDL TEST BENCH, describes the test bench and the available script commands.

Chapter 8 DESIGN FLOW, provides information on the supported design flow.

Chapter 9 VHDL LIBRARIES , provides information about the delivered vhdl libraries.

1.3 Conventions Used in This Manual:
This icon to the left of text warns that an important point must be observed.

WARNING Denotes a warning, which advises you of precautions to take, to avoid being electrically
shocked.

CAUTION Denotes a caution, which advises you of precautions to take to avoid electrical,
mechanical, or operational damages.

NOTE Denotes a note, which alerts you to important information.

Italic text denotes a warning, caution, or note.

Bold Italic text is used to emphasize an important point in the text or a note

mono text is used for sections of code, programming examples, and operating system
commands.

B,KB,MB,GB is for Byte, KiloByte = 1024 bytes, MegaByte = 1024*1024 bytes, GigaByte =
1024*1024*1024 bytes

b,Kb,Mb is for bit with multipliers as above.

Triggered Denotes a VHDL object. It could be a single- or multi-bit signal or a component or a
library name.

0xn..n Denotes a hexadecimal value.

1.4 Warning Regarding Medical Use
The Analyzer and Streamer Analyzer cards are not designed with components and testing procedures that
would ensure a level of reliability suitable for use in treatment and diagnosis of humans. Applications of
these cards involving medical or clinical treatment can create a potential for accidental injury caused by
product failure, or by errors on the part of the user. These cards are not intended to be a substitute for any
form of established process or equipment used to monitor or safeguard human health and safety in
medical treatment.

WARNING: The modules discussed in this manual have not been designed for making direct
measurements on the human body. Users who connect an Acqiris module to a human
body do so at their own risk.

1.5 Warranty
Please refer to the appropriate User Manual.

1.6 Warranty and Repair Return Procedure, Assistance, and Support
Please refer to the appropriate User Manual.

1.7 System Requirements
Please refer to the appropriate User Manual.

FDK Reference Manual Page 12 of 165

2. Installation
2.1 Preliminary Remarks

The FDK installation does not install any design tools. It is recommended that you install design tools
prior to the FDK installation.

2.2 Installation Types

On a workstation that will be used for firmware development only – no tests or development with actual
modules –, you should select the AcqirisFDK only installation. If the workstation will also be used for
tests and/or development with actual modules, then it is recommended to choose a Full installation.

To work with actual modules, the standard Acqiris Software must be installed. This will be automatically
verified according to your installation choices, and the Acqiris Software 3.0 installer will be run in a
simple, silent mode, as part of the FDK installation if necessary. If you want to control the installation of
the Acqiris drivers and software development environment, you should manually run the Acqiris
Software installer prior to the FDK installation. You may also want to use a later version of the Acqiris
Software. Please refer to the User Manual - Family of 8-bit Digitizers for detailed instructions for the
installation of the standard Acqiris Software. Note that the standard demo application AcqirisLive does
not support the Analyzer Mode for AC210/SC210 nor AC240/SC240.

2.3 FDK Installation

To install the FDK, insert the CD-ROM in the computer drive, and select Install FDK from the autoplay
window. If the FDK window does not start automatically, run AcqirisFDK_ACSC2x0Setup.exe from the
Setup folder on the CD-ROM. After the installer starts, follow the instructions carefully.

If you are upgrading to a more recent version, it is recommended that you specify a different Installation
Folder, or uninstall the previous version before running AcqirisFDK_ACSC2x0Setup.exe.

Upon completion of the installer, you may need to reboot your computer.

When the installation is completed, all of the files needed for developing a new firmware (except for the
Xilinx compiled libraries) will be under the FDKDesign subfolder of the Installation Folder.

HdlDesigner users should set their project mapping to the file:
Installation Folder/HdlDesigner/Mapping/ac240_fdk.hdp (or the appropriate model name).

2.4 Checking Your Installation
After the installation, we recommend that you verify the entire flow with one of the Acqiris base designs
in the developer’s library. The base designs are described in chapter 5, BASE DESIGN.

You should simulate, synthesize, and “Place and Route” the base design. Then, generate a new .bit file
and use it instead of the existing .bit file (AC240.bit / AC210.bit / SC240.bit / SC210.bit). Run the
application and use the continuous acquisition mode to verify the operation with different acquisition
settings (sample rate, channel combination).

The base designs of the library ac240_developer_lib are entirely implemented and delivered with the
simulation, synthesis, and “Place and Route” working directories. Comparing the initial log files to those
you have generated will increase your confidence that all went right.

2.5 Recommendations on Beginning a New Design
Once you have verified the installation (see above) you may start from one of the base designs modifying
it to become your design.

Initially, you may want to leave the core user_block_example and its connection in place so that
you can use AcqirisAnalyzers to verify the data stream and the correct operation of the module with your
firmware.

The core user_block_example uses less than 1% of the FPGA gates or registers and only 8 blocks
of RAM. If necessary it can simply be removed.

NOTE: Developers should modify only their own library or the files in the library ac240_developer_lib.
Original files in the library ac240_fdk should not be altered.

FDK Reference Manual Page 13 of 165

3. FDK Overview
The Agilent Acqiris models AC240/210 Analyzers and SC240/210 Stream Analyzers are 6U compactPCI
digitizers with on-board data processing in the form of a large field-programmable gate array (FPGA).

Since FPGAs are reprogrammable, these products offer the possibility of designing customer-specific
computing algorithms. And, because FPGAs contain a large number of computing elements, such
algorithms can be made extremely powerful, with a computing power many times that of today’s high-
end personal computers.

The firmware design kit (FDK) described in this manual covers everything that is needed to develop a
custom application on the AC2x0 Analyzers and the SC2x0 Stream Analyzers. The following sections
give a short overview of the main components of the FDK.

3.1 The FPGA Cores
The FDK is built on a set of standard cores instantiated in the FPGA. In general, each core is an interface
to a system of the DPU. Among these are:

• the Local Bus interface, to connect with the PC

• the external DDR memory interface

• the interface to the digitizer data input stream

3.2 Base Designs
These are complete FPGA programs with functionality implemented to demonstrate the usage of the
available cores. The AcqirisAnalyzers program will, by default, load and run the Base Design. Its source
code is intentionally left open, making it the best starting point for any new design.

To make the developer’s work easier, there are several base designs. There are two base designs without
external memory support, a single channel version for the AC210 and a dual channel version for the
AC240. There is one base design for an AC240 with support for the (optional) external memory, and one
base design for an SC240 with support for the Rocket IO, implementing data streaming with the sfpdp
protocol.

3.3 Reference Designs

Reference Designs are real, complete, complex applications. The source code for the reference designs is
not available. There are several reference designs described in the AC2x0 or SC2x0 User Manuals.

3.4 The FPGA Design Tools
Two flows are currently supported. The standard Acqiris VHDL flow based on Mentor and Xilinx tools
(HdlDesigner, ModelSim, Precision Synthesis, and ISE), and the XST flow based on the Xilinx
proprietary synthesizer. For large designs or timing critical designs, Agilent Acqiris recommends using
the standard flow based on Precision Synthesis.

Agilent may add new tools in the future, depending on customer requirements.

3.5 The Acqiris Test Bench
In order to simplify the functional verification by simulation, Agilent Acqiris supplies a complete VHDL
test system. It is based on a set of high-level commands read from a set of test control text files. There
are commands for clock generation, for reading/writing the FPGA (either with single or burst mode
access), and for the generation of data input streams (which could also be read from a text file).

Developers do not have to deal with complex signal generation. This is done automatically by the Acqiris
Test Bench.

3.6 The .bit File Header
It is often useful to clearly identify a .bit file, or to know what capabilities the loaded .bit file implements.
Agilent Acqiris has defined a header with multiple fields for name, revision, and other comments. Some
of the values can be read with a driver function. The header is inserted at the front of the .bit file with the
FPGALook utility which can also be used to edit or read the .bit file header.

FDK Reference Manual Page 14 of 165

3.7 Overview of the FPGA Core Structure

Key Features
� FPGA – Xilinx XC2VP70-6 (FF1517 Package)

� Local Bus Interface (LB) – Interfaces the FPGA to the Local Bus through which the host PC can
read from and write to the FPGA over the PCI bus. The transfer rate maximum is 132 MB/s.

� Data Entry Interface – Supplies the FPGA with acquisition data retrieved from one or two
channels. The data rate depends on the timebase sample rate setting. The maximum rate is 1GB/s
per channel.

� Serial Front Panel Data Port (SFPDP) – Provides an interface to external high-speed optical
data link transceivers compliant with the Serial Front Panel Data Port protocol. This core should
only be instantiated in firmware for SC Streamer Analyzers.

� Dual Port Interface [Option] – Provides an interface to the (optional) external dual port memory
extension. Each port is 64 bits wide. The Dual Port Static Ram (DPSR) runs at up to 125 MHz,
and provides a capacity of 128 Kwords or 1 MB.

� DDR SDRAM memory controller [Option] – Provides an interface to two (optional) external
SDRAM extensions. Each port is 64 bits wide. Each Synchronous Dynamic Ram (SDR) block
runs at up to 166 MHz, provides a capacity of 32 Mwords or 256 MB, and can achieve continuous
transfer rates of ~ 2 GB/s.

� Front Panel IO Control Interface – Supports multiple digital connections to the front panel
connectors. Digital signal type and direction are configurable within the FPGA. The interface also
supports a 16-bit DAC for the generation of an analog output signal.

3.8 Accessing Registers and Memories
The user application communicates with the FPGA using the function Acqrs_logicDeviceIO. This
function can directly address 128 registers of 32 bits. Much larger memories can be accessed through the
implementation of an indirect addressing method.

Although applications can access all registers, the definition of registers 0 to 63 is reserved for Agilent
Acqiris. The definition of the remaining 64 registers is entirely open.

Experience has shown that 2 * 64 registers is not sufficient. The Agilent Acqiris registers 0 to 3 are
predefined to implement indirect addressing, thus extending the address space to 232 addresses. The DMA
data transfer uses burst readout and indirect addressing at a rate of up to 132 MB/s. Register use is further
described in section 4.5.1 EXTENSION OF THE INTERNAL BUS ADDRESSING SPACE.

DDR Controller A

WR Buffer RD Buffer

DDR SDRAM

Extension (256MB)

Dual Port Interface

Dual Port SRAM

Extension

Local

Bus

MAC100 MAC100

User-Defined

Processing Block

I/O Extension

Data Link

Data Link

Trigger

DDR Controller B

WR Buffer RD Buffer

DDR SDRAM

Extension (256MB)

FDK Reference Manual Page 15 of 165

4. Overview of the Data Processing Unit
4.1 Digitizer

The ACxx0 and SCxx0 are fully described in chapter 3 of their respective user manuals. It is
recommended to read that before this document.

4.2 Data Processing Unit (DPU)
The DPU is the combination of a Virtex2P FPGA – XC2VP70 speed-6 – and (optional) external
memories. There are two instances of a large dynamic Double-Data-Rate high-speed memory (DDRM)
for applications needing more memory than available within the FPGA. The additional static Dual-Port
memory (DPM) is useful for applications needing simple fast random access memory.

The PCI Interface connects the analyzer card to the host computer through the PCI bus. It translates the
complex PCI transactions to the simpler ones of the Local Bus, which connects all major components of
the cards, including the FPGA.

Within the FPGA, Agilent Acqiris has defined the Internal Bus (IB), a different data transfer protocol
better adapted to an FPGA implementation. The User Core is controlled through the FPGA Internal Bus.
The User Core has direct access to all memories and the IO control interface. The De_Interface simply
feeds the User Core with acquisition data.

There is additional trigger capability not shown below.

The analog input signals are passed through signal-conditioning amplifiers, where the coupling, offset,
and gain can be programmed. Each signal is sampled at up to 1 GS/s and converted to 8-bit values. They
are multiplexed to blocks of 16 samples, at up to 62.5 MHz, and passed to the data processing unit.

In case of an AC240 or a SC240 module, the front panel input INPUT1 corresponds to the data flow B
(DE-BusB) and the front panel input INPUT2 corresponds to the data flow A (DE-BusA). In case of an
AC210 or a SC210, the front panel input INPUT1 corresponds to the data flow A (DE-BusA).

In interleaved operation of the AC240 or SC240, a single signal (Input 1 or 2) is converted by both ADCs
in a time-shifted manner, so as to effectively achieve twice the conversion rate of a single ADC. The data
flow A has the odd samples (0,2,4,…) and the data flow B has the even samples (1,3,5,…)

4.2.1 The FPGA – XC2VP70-6
More information on the XC2VP70-6 can be found in the Xilinx documentation. Please refer to it at
http://www.xilinx.com/. Its major characteristics are listed below.

Name Qty Description / Comment

Logic cells 66176 1 Logic cell has 1x (4 Input LUT + Flip-Flop + Carry Logic)

Block Ram 5.9 Mb 328 instances of 18 kb block ram

Multiplier 328 18x18-bit multiplier

DCM 8 Digital clock manager including frequency synthesis and phase shift.

FDK Reference Manual Page 16 of 165

Name Qty Description / Comment
Frequency up to 420 MHz

Rocket IO 16 16 instances of 3.25 Gb/s serializer, 12 instances usable in the design

PowerPC 2 Currently not supported by Agilent

.bit file Size 3.2 MB Size of the .bit file for FPGA configuration

4.2.2 DPU Clocking Resources
There are 3 different clock source types that can be used within the Data Processing Unit.

1. CK33M and CK66M are two clocks derived from the PCI clock fed by the CompactPCI
backplane. CK33M is a 33 MHz clock whereas CK66M is a 66 MHz clock. They are always
available (continuous clock).

2. DECLKA is driven by the data demultiplexer chip located on the bottom of the board (MACA).
Its frequency is derived from the ADC Sampling clock (FS/16) and depends on the Acquisition
mode. DECLKB is similar to DECLKA and is driven by the upper data multiplexer when using
the second acquisition channel (available in the AC240 or SC240). Depending on the
Acquisition mode these clocks may be stopped. When running, DECLKA and DECLKB always
have the same frequency but they could be phase shifted depending on the acquisition settings
(Interleaved acquisition).

3. RefCKA and RefCKB are driven by an external PLL and are intended to generate a clock
reference for serial transmission in the SC analyzers. RefCKA and RefCKB always have the
same frequency but may exhibit a small phase shift due to PCB routing delay. It should be noted
that RefCKA is intended for top edge RocketIO instances whereas RefCKB is intended for
bottom edge ones.

The others signals allocated to the clock pads are either dedicated to DCM feedback (DMem_FB,
DPA_CLKFB, DPB_CLKFB) or used for low and stable input propagation delay (TRIGA).

The clock outputs to the SRAM and DRAM memories use standard IO pads and are phase locked to the
internal clock driving the outputs (DPA_CLK, DPB_CLK, DDRA_CK, DDRB_CK).

The Data Processing Unit offers up to sixteen clocks pads (IBUFG_ primitives). Each clock pad can be
grouped by 2 to provide a differential clock buffer (IBFUGDS_ primitives). The clock source allocation
is frozen by the layout of the PCB board and is described in the next table.

The table below presents the various clock sources at the DPU pad level:

Clocks PAD Allocation Comments

GCLK0S DECLKA ADC Sampling Clock / 16 – Channel 0

GCLK1P DECLKA ADC Sampling Clock / 16 – Channel 0

GCLK2S RefCKA_p

GCLK3P RefCKA_n

Programmable Reference Clocks for top edge RocketIO

GCLK4S TrigA_p

GCLK5P TrigA_n

Trigger Accepted

GCLK6S -- Not Used

GCLK7P DECLKB ADC Sampling Clock / 16 – Channel 1

GCLK0P RefCKB_p

GCLK1S RefCKB_n

Programmable Reference Clocks for bottom edge RocketIO

GCLK2P DPA_CLKFB Clock Feedback for the SRAM Memory, port A

GCLK3S DPB_CLKFB Clock Feedback for the SRAM Memory, port B

GCLK4P DMem_FB_p

GCLK5S DMem_FB_n

Clock Feedback for the DRAM Memory, Bank A & B

GCLK6P CK33M 33 MHz Local Bus Clock

GCLK7S CK66M 66 MHz Local Bus Clock

FDK Reference Manual Page 17 of 165

Firmware for the SC or AC Analyzers can use up to 14 different clock domains with some area
restrictions.

Agilent Acqiris supplies several clock manager cores because a single solution does not cover enough
applications. Two global clocks are distributed throughout the whole FPGA (lbclkg / sysclk). The
User Core should only use these two clock domains. The other 14 possible clock domains are used by the
Agilent Acqiris-supplied cores. For further details, please refer to chapter 6 FDK CORE LIBRARY.
Developers should not have to deal with clock management and generation unless very specific needs
make it unavoidable.

4.3 Understanding DMA Transfers
Direct Memory Access (DMA) transfers are the fastest way of transmitting data from the FPGA to the
host computer. They are supported in the context of the Indirect Read Access mode (to be described later
in section 4.5 INTERNAL BUS). After the overhead of some initialization, the operation can read data at
each clock transition until the transfer is complete. A validation signal follows the data to indicate valid
data; thus the target (i.e. the PCI interface) can control the data flow. A DMA transfer is usually split into
several bursts because other operations on the PCI bus may interrupt it and because the destination
memory in the computer is paged (4 kB/page under Windows). Each burst generates a complete Local
Bus access cycle.

A DMA transfer is always initiated by the host computer. The Local Bus interface supports any sequence
of bursts of any size. All designs should do likewise. The target circuitry within the FPGA knows neither
the burst size nor the size of the entire DMA transfer. The FPGA must simply respond to requests from
the PCI interface until termination of the transfer.

For most operating systems the first burst in a transfer is typically less than 4 kB, because it corresponds
to a partial page in the computer. Subsequent bursts usually correspond to the page size of 4 kB and the
last burst may be smaller again.

The software that initiates the DMA transfer must know the number of data to be transferred. If the
quantity of data to be read is variable, there must be a mechanism for the software to be told the actual
number of available data. The simplest solution is to count them within the FPGA and store the value in a
register so that the software can read it prior to initializing the DMA transfer.

4.4 Local Bus
The Local Bus connects the FPGA to the PCI interface. The firmware designer does not need to
understand the Local Bus in detail, but its signals are visible in the simulation. Thus, a short explanation
is given here.

4.4.1 Local Bus Address
On the AC/SCxxx board, all resources are accessible from a host computer through the PCI bus. The
control CPLD translates the PCI requests into Local Bus requests. Therefore, all resources of the board
are connected on the Local Bus which has a 14-bit address bus and provides a 16 KB address space. Note
that all addresses are in bytes, but the Local Bus only deals with 32-bit words, therefore the two LSB’s of
the address is always 0.

The Local Bus address space is divided in two main areas which are shown in the following table.

Addr Low Addr High Size Purpose

0x0000 0x1FFF 8K x 8 bits Standard area for all resources on the base board (without the
mezzanines)

0x2000 0x3FFF 8K x 8 bits Reserved area for FPGAs. Divided in eight areas to handle
up to eight FPGA. Each FPGA occupies a space of 1K x 8
bits

The processing FPGA of the AC/SCxxx occupies the first FPGA area defined in the range from 0x2000
to 0x23FF. Half this range is reserved for Agilent Acqiris designs; the second half contains the FDK
registers. There are 128 32-bit FDK registers. The user application communicates with the FPGA through
its registers by using the Agilent Acqiris-supplied API-function Acqrs_logicDeviceIO. Although the
customer has r/w access to all registers, the definition of the registers 0 to 63 is reserved for Agilent
Acqiris. The definition of the remaining 64 registers is entirely open for use by the firmware developer.

FDK Reference Manual Page 18 of 165

Local Bus Address Target
0x2200 to 0x23FC, step 0x4 Processing FPGA Register 0 to 127, each 32 bits

As noted earlier, the CPLD translates the PCI requests into Local Bus requests. The Local Bus requests
are translated within the FPGA to Internal Bus requests. This last translation is done by the core
lb_interface . Accessing the FDK registers leads to request on the Internal Bus.

4.4.2 Local Bus Signals

Signal Short Description
LB_LHOLD Request from the PCI interface to access the Local Bus

LB_LHOLDA Grant to the PCI interface to access the Local Bus

LB_WRITE Local Bus access direction

LB_ADS_N Local Bus address strobe

LB_ADDR Local Bus address, 14 bits, bi-directional

LB_DATA Local Bus data, 32 bits, bi-directional

LB_READY_N Local Bus ready

LB_BLAST_N Local Bus flag for last transfer of a burst

LB_BREQ Local Bus request

LB_EOT_N Abort DMA (not supported)

FCS_N FPGA Chip select from the PCI interface

FREADY_N Ready to the PCI interface
(present two cycles prior to LB_READY_N)

FREAD Local Bus access direction from the PCI interface

FDK Reference Manual Page 19 of 165

4.4.3 Local Bus Timing
Each Local Bus transaction starts with the address strobe LB_ADS_N and ends with LB_BLAST_N and
LB_READY_N simultaneously low (both active ‘0’). Once LB_BLAST_N is ‘0’, it remains ‘0’ until the
first occurrence LB_READY_N. If the transaction is a single word read or write, LB_BLAST_N will
already be active in cycle 2.

4.5 Internal Bus
The Local Bus protocol is not well adapted for an implementation inside the FPGA. Therefore Agilent
Acqiris has defined an Internal Bus (IB-BUS). It handles single and burst transfers. The
lb_interface core connects the Local Bus to the Internal Bus (see description in section 6.7 LOCAL
BUS INTERFACE). The Internal Bus protocol is described there.

An access starts with one of the 3 selection signals rising to ‘1’ (IB_Customer , IB_Acqiris , or
IB_Cpld). A firmware designer only deals with the Customer Space. The selected target then replies
with IB_Rdy until the access ends when the selection signal falls to ‘0’. If a target needs additional time
at the end of the access before it can handle another one, the signal IB_End should be driven to ‘0’,
forcing the next access cycle to wait until the target sets the signal IB_End back to ‘1’.

The IB-BUS has two 32-bit data busses: IB_DataW to write to internal registers and IB_DataR to read
from internal registers.

Read data multiplexing to the IB_DataR bus is implemented with a simple OR. This works because any
target should set its IB_DataR output to ‘0’ when it is not selected. The same rule applies for Ready
multiplexing to IB_Rdy . It can also be used for IB_End with a simple AND function because the active
state is negative.

When the access is a Burst Indirect Access (length of 1 is still possible), the state of IB_Direct
remains ‘0’ during the entire access. Otherwise, in case of direct accesses, it is driven high.

If the access addresses an unimplemented target, the Local Bus interface will generate a timeout by
setting IB_TimeO to ‘1’ until the access cycle ends. After this IB_TimeO is set back to ‘0’.

4.5.1 Extension of the Internal Bus Addressing Space
Although the Local Bus protocol supports burst transfers on any address, the core lb_interface
supports burst transfers only on a single address. This address corresponds to the first FDK register at
0x2200 (or register 0) and is called the Indirect Data Port . All other registers are called the Direct
Access Registers.

The Indirect Data Port must be used, in any case, when reading buffers. It operates with two other
registers in order to implement indirect addressing. These are the Buffer Identifier Register and the
Indirect Address Register. The Buffer Identifier Register extends the capability of the Indirect Data
Port to address up to 2x128 different buffers (128 for the Customer, 128 for Agilent Acqiris). The
Indirect Address Register extends the per buffer address space to 232 addresses. Burst accesses through
the Indirect Data Port reach a transfer rate up to 132 MB/s.

There are 64 Direct Access Registers reserved for the Customer and 64 for Agilent Acqiris. This is not
enough for many designs so we have added a simplified indirect addressing capability for direct accesses.
The Direct Access Registers can be made to use the Direct Access Block Register, an additional address
register, if the developer desires. The Direct Access Block Register extends the number of possible

FDK Reference Manual Page 20 of 165

Direct Access Registers to 256 blocks of 64 registers for both the Customer FDK registers and the
Agilent Acqiris reserved FDK registers.

For a description of the signals IB_xxx mentioned in the table below, please read the next section.
Register Access Description

AGILENT RESERVED, customer has r/w access, but developer cannot define any bit in this space

0 R, W Indirect Data Port: During Indirect (Burst) Access, data are read from, or
written to, this register. The signal IB_Addr gets the value of the Indirect
Address Register (see below).

1 R,W Indirect Address Register: Before an Indirect (Burst) transfer, this
register is loaded with the start address from which to read (or to which to
write).The signal IB_Addr takes the value of this register when accessing
the Indirect Data Port . This address is defined in bytes and auto-
incremented by 4 for each 32-bit word that is read or written.

2 R, W Buffer Identifier Register: This register is intended to distinguish
between different data buffers. Its value is never auto incremented. The
signal IB_IndirCtr takes the value of this register for all accesses to the
Internal Bus. Values 0 to 0x7F are reserved for Agilent Acqiris. Values
0x80 to 0xFF are free to be used by firmware developers.

3-8 R, W Reserved for Agilent Acqiris use. Customers shall not define any bits at
these locations.

9 Direct Access Block register: This register is intended to distinguish
between different blocks of Direct Access Registers. Its value is never auto
incremented. The bits 23..16 of the signal IB_Addr takes the value of this
register for all Direct Accesses to the Internal Bus. Simultaneously, the bits
13..0 of the signal IB_Addr takes the value of the bits 13..0 of the Local
Bus address LB_Addr (The other bits of IB_Addr remain ‘0’).

10-63 R,W Reserved for Agilent Acqiris use. Customers shall not define any bits at
these locations.

OPEN REGISTERS, customer has r/w access, all bits are defined by the firmware developer

64-127 R, W Block of 64 registers of 32 bits each. Usage is totally free for Customers.

4.5.2 List of Internal Bus Signals

Signal Type Short Description

IB_Customer Out Customer space selection signal:
0 = not in the User Core address space
1 = within the User Core address space

IB_Cpld Out Agilent Acqiris reserved usage, select CPLD addressing space

IB_Acqiris Out Agilent Acqiris reserved usage, select Agilent Acqiris addressing space

IB_Dirsel Out Addressing type of current access: 0 = Indirect, 1 = Direct

IB_IndirCtr Out 8-bit Buffer Identifier number. It takes the value of the Buffer Identifier
register for accesses to the Indirect Data Port . 0x0 to 0x7F are reserved for
Agilent Acqiris. 0x80 to 0xFF are available to the firmware developer.

IB_Write Out Access direction:
1 = write (data from the driver), 0 = read (data to the driver)

IB_Addr Out 32-bit address. It takes the value of the Indirect Address Register for the
accesses to the Indirect Data Port or the value of the Local Bus address for
the accesses to the Direct Access registers.

IB_DataW Out 32-bit write Data bus

IB_DataR In 32-bit read Data bus

All unselected devices connected to the IB bus shall drive 0x00000000 on

FDK Reference Manual Page 21 of 165

Signal Type Short Description
IB_DataR to implement a data read multiplexer with a simple OR function.

IB_Rdy In The selected device shall drive ‘0’ when the data (read) or the device (write)
is not ready or not selected.

The selected device shall drive ‘1’ when the data (read) or the device (write)
is ready and selected.

All unselected devices connected to theIB bus shall drive ‘0’ on this line to
implement a ready selection multiplexer with a simple OR function.

IB_TimeO Out Set to ‘1’ when a device failed to acknowledge IB_Rdy within 2.0 us after
an IB cycle has been started. The cycle will end without retry. IB_TimeO
will then come back to ‘0’.

IB_Valid Out IB_Valid is ‘1’ when IB_DataW is valid. In case of a burst write, it
should be used to load the data to the selected device. For a burst write
access IB_Valid can be ‘1’ during multiple clock periods, denoting
successive writings.

IB_End In When set to ‘1’, allows the Local Bus interface to execute an access to the
Internal Bus. It is normally driven ‘1’ except in the case of an Indirect
Access. For Indirect Accesses, the selected device must drive ‘0’ on this line
for the entire time of the access. IB_End must be set to ‘1’ when the device
has completed the access and when it is ready for another one.

4.5.3 Internal Bus Address for the Direct Access Registers
Any transaction on the Internal Bus starts with the signal IB_Customer rising to ‘1’. The transaction
ends with the signal IB_Customer falling back to ‘0’. IB_Customer is set to ‘1’ for each Internal
Bus access to the FDK registers. The signal IB_Customer and the Internal Bus address IB_Addr must
be used to validate the access to the Direct Access Registers.

While IB_Customer is ‘1’, the Internal Bus address IB_Addr takes the following value:

31-24 23-16 15-14 13-2 1-0

00000000 DIR_BLOCK_NBR(7..0) 00 LB_ADDR(13..2) 00

[13-2] LB_ADDR The register address within the register block. It is the value of the

bits 13 to 2 of the Local Bus address.

[23-16] DIR_BLOCK_NBR It is the Direct Access Block number. It is equal to the value of the
bits 7 to 0 of the Direct Access Block Register (It is ‘0’ by
default).

The value of the Signal IB_indirCtr is not relevant and must not be used to validate accesses to the
Direct Access Registers.

4.5.4 Internal Bus Address for the Indirect Data Port
Any transaction on the Internal Bus starts with the signal IB_Customer rising to ‘1’. The transaction
ends with the signal IB_Customer falling back to ‘0’. IB_Customer is set to ‘1’ for each Internal
Bus access to the Data Port . The signal IB_Customer and the Internal Bus buffer identifier signal
IB_IndirCtr must be used to validate the access to a buffer. The Internal Bus address IB_Addr can
be used to determine the address within the buffer at which the transfer will begin.

While IB_Customer is ‘1’, the Internal Bus address IB_Addr takes the following value:

31..0

IND_ADDR

[31-0] IND_ADDR The value of the Indirect Address register

While IB_Customer is ‘1’, the internal buffer identifier IB_IndirCtr takes the following value:

FDK Reference Manual Page 22 of 165

31..8 7..0

0x000000 BUF_ID_REG

[7-0] BUF_ID_REG The bits 7 to 0 of the Buffer Identifier Register

4.5.5 Direct Access

Direct Access is commonly used to configure a control register or read a status register. It is not intended
for reading or writing large amounts of data. Burst transfer is not available for Direct Access mode.

Note1: This value is actually fixed to 4 CK cycles. Any target should support a minimum of 2 CK cycles
for future compatibility.

Note2: Although the current minimum is 9, any target should support a minimum separation of 2 CK
cycles for future compatibility.

Note3: IB_DataR must be valid for readout when IB_Rdy is set to ‘1’. Otherwise IB_DataR should
be set to ‘0’.

Note4: It is possible to assert IB_Rdy already in the first clock cycle. A target should set IB_Rdy only
when it is the source or destination of the current transfer.

4.5.6 Indirect Access Write
Indirect Access write operations may or may not be executed as burst transfers, i.e. as sustained data
transmissions without any dead time. The decision on whether the transfer is a burst depends on the driver
and/or the PCI-interface. It cannot be influenced by the firmware developer. Therefore all designs must
support burst transfers. As long as Write DMA is not supported by the driver, all bursts (which are
initiated by the PCI interface) will be of length 1.

FDK Reference Manual Page 23 of 165

The delay Ready to Valid is due to the backward and forward pipelines within the Local Bus interface.

Note1: It is possible to set IB_Rdy to ‘1’ already in the first clock cycle. A target should set IB_Rdy to
‘1’ only if it is the source or destination of the current transfer.

Note2: As the target does not know the size of the burst, it should set IB_Rdy to ‘1’ as long as it is
ready to receive data and as long as IB_Customer remains ‘1’. IB_Rdy shall not be set to ‘1’
for more than two cycles after IB_Customer has gone to ‘0’ (in the example above, it should
not be set after cycle 13).

Note3: It is possible to set IB_End to ‘0’ already in the first clock cycle. A target should set IB_End to
‘0’ only if it is the source or destination of the current transfer. The target should set IB_End to
‘0’ until it is ready to start a new burst cycle. A target shall not set IB_End back to ‘1’ before
the third cycle after IB_Customer is set to ‘0’ (in the example above, it should not be assigned
before cycle 14).

Note4: IB_Valid is the acknowledgement from the core lb_interface to the target after having
set IB_Rdy to ‘1’. The data on IB_DataW are valid while IB_Valid is ‘1’. The latency from
IB_Rdy to IB_Valid is currently 8 but could change in the future, so any target should wait
for IB_Valid .

Note5: IB_DataW is valid while IB_Valid is ‘1’. The last IB_Valid is always two cycles after
IB_Customer is set to ‘0’.

Note6: A new burst cycle will start, at the earliest, two clock cycles after IB_End has been set to ‘1’.

Note7: If Ctr2 is equal to Ctr1 and if both accesses are write–indirect, then the address is
 A2 = A1 + 0x4 * (the number of previously read data).

4.5.7 Indirect Access Read
Indirect Access read operations may or may not be executed as burst transfers, i.e. as sustained data
transmissions without any dead time. The decision on whether the transfer is a burst depends on the driver
and/or the PCI-interface. It cannot be influenced by the firmware developer. Therefore all designs must
support burst transfers. If the driver uses DMA, the bursts may be of arbitrary length. If the data transfer
is not DMA, the bursts are of length 1.

Normally, the driver uses DMA for large data transfers. The programmer can forbid the use of DMA and
force the use of single-word transactions on the PCI bus (and consequently on the Local and Internal
Busses) by setting the option “DMA=0” when initializing the analyzer board with the function
Acqrs_InitWithOptions . The non-DMA option may be useful as a diagnostic tool.

FDK Reference Manual Page 24 of 165

A target should not stop sending data before the target selection signal is back to ‘0’.

Note1: It is possible to set IB_Rdy to ‘1’ already in the first clock cycle. A target should set IB_Rdy
to ‘1’ only if it is the source or destination of the current transfer.

Note2: As the target does not know the size of the burst, it should set IB_Rdy to ‘1’ as long as it is
ready to send data and as long as IB_Customer remains ‘1’. IB_Rdy shall not be set to ‘1’
more than two cycles after IB_Customer has gone to ‘0’ (in the example above, it should not
be assigned after the cycle 13). In the example, the Data D1 to D3 are effectively read out to the
PCI bus. The remaining D4 to D9 will be read to the PCI without any further transaction on the
FPGA Internal Bus. At the next burst, the target should send first the Data D10 and then
continue.

Note3: It is possible to set IB_End to ‘0’ already in the first clock cycle. A target should set IB_End
to ‘0’ only if it is the source or destination of the current transfer. The target should keep
IB_End at ‘0’ until it is ready to start a new burst cycle. A target shall not set IB_End back to
‘1’ before the third cycle after IB_Customer is set to ‘0’ (in the example above, it should not
be assigned before cycle 14).

Note4: IB_Valid is the acknowledgement from the core lb_interface to the target that has set
IB_Rdy ‘1’. The Data on IB_DataW are valid while IB_Valid is ’1’. The latency IB_Rdy
to IB_Valid is currently 8 but could change in the future, so any target should wait for
IB_Valid .

Note5: IB_DataW is valid while IB_Valid is ‘1’. The last IB_Valid is always two cycles after
IB_Customer is set to ‘0’.

Note6: A new burst cycle will start at least two clock cycles after IB_End has been set to ‘1’.

Note7: If Ctr2 is equal to Ctr1 and if both accesses are read–indirect, then the address is
 A2 = A1 + 0x4 * (the number of previously read data, in this case 9).

4.5.8 Multi Target Connection
A single target can be connected directly to the Internal Bus port (all IB_xxx signals). A single target
could decode multiple direct and/or indirect addresses.

When connecting multiple targets, all of them need to drive the signals IB_Rdy, IB_DataR, and IB_End
back to the lb_interface. These lines must be set to a specific state (low for IB_Rdy and IB_DataR, high
for IB_End) when the target is not connected, permitting the use of a simple OR or AND as a multiplexer.

The following example shows these connections in case of 8 connected targets, 2 of them using indirect
addressing:

FDK Reference Manual Page 25 of 165

In3
IB_DataR Ored

std_lib
or8_w
I2

IB_End

In0

In1

In2 IB_DataR3

IB_DataR1

IB_DataR_User

IB_DataR4

IB_End_User

IB_End_DE
IB_End_UE

OredIn0

In1
Ored

IB_Rdyo1
IB_Rdyo2IB_Rdy

In4

In5

In6

In7

IB_DataR5

IB_Rdy1
IB_Rdy_User

IB_Rdy3
IB_Rdy4

IB_Rdy5

IB_DataR6

IB_DataR7

IB_Rdy6

IB_Rdy8
IB_Rdy7

IB_DataR8

IB_Rdy_UE

IB_DataR_UE

IB_Rdy: The signal from all targets should be OR’d.

 IB_End: The signal from all targets should be AND’d.

 IB_DataR: The signals from all targets should be bit-wise OR’d.

FDK Reference Manual Page 26 of 165

5. Base Design
The Agilent Acqiris-supplied Base Designs are simple but complete designs for use as:

• A starting point for the development of new firmware

• A test application to verify the behavior of the AC2x0/SC2x0 hardware and/or the Agilent
Acqiris-supplied cores.

The base designs contain most of the available cores.

5.1 Multiple Base Designs
There are no specific base designs for the SC210. You should use the base design for the SC240, i.e. use
sc240_top_sysclk_str1 .

The four Base Designs in the developer’s library are examples of complete, functional firmware including
data acquisition, internal buffering, and readout capabilities. The implemented cores offer a necessary set
of functions, in order to minimize the work needed to start a new design. They include several registers,
the DE-Buffer, and the DE-Monitor. The DE-Buffer is implemented in the block de_interface and is
always available. It can be read to monitor the input data stream. The DE-Monitor buffer is implemented
in the component user_block_example and can also be read to the host computer, to monitor the
data stream within the FPGA.

Model BaseDesign Comment
AC240 ac240_top_sysclk Two channel Base Design without interface to the

external memory

AC240 +
mem option

ac240_top_sysclk_ddr Two channel Base Design with interface to the
external memory

AC210 ac210_top_sysclk Single channel Base Design without interface to
the external memory

SC240 sc240_top_sysclk_str1 Two channel Base Design with interface to the
external optical link

Each Base Design is accompanied by a Test bench component

Model Test bench Comment

AC240 ac240_top_sysclk_tb Test bench component for the two channel Base
Design without interface to the external memory

AC240 +
mem option

ac240_top_sysclk_ddr_tb Test bench component for the two channel Base
Design with interface to the external memory

AC210 ac210_top_sysclk_tb Test bench component for the single channel
Base Design without interface to the external
memory

SC240 sc240_top_sysclk_str1_tb Test bench component for the two channel Base
Design with interface to the external optical link

5.2 Bitfile name for the Base Design

Each base design is completely implemented. The corresponding bitfile could be exercised with the
program AcqirisAnalyzer. The cosrrespondance between the base design component and the bitfile is
given in this table:

Model BaseDesign Bitfile
ac240 ac240_top_sysclk ac240.bit

AC240 +
mem option

ac240_top_sysclk_ddr ac240mem.bit

AC210 ac210_top_sysclk ac210.bit

SC240 sc240_top_sysclk_str1 sc240str1.bit

FDK Reference Manual Page 27 of 165

5.3 Overview of the Base Designs

5.3.1 AC210 Base Design

The base test ac210_top_sysclk is delivered as an example of buffering the acquisition data to a
buffer within the FPGA: the DE-Monitor buffer. This buffer has the ability to store incoming data,
either asynchronously or synchronized with the trigger. It is instantiated within the block
user_block_example . The bloc ac210_user_block is a template for developers to insert custom
designs.

5.3.2 Trigger accuracy versus Sampling Rate

This base design implements the simple trigger block trigger_ manager which has an accuracy
directly related to the sampling frequency.

Module Trigger Accuracy

AC210 Equal to the sampling period
multiplied by 16 (16ns at 1 GS/s)

5.4 AC240 Base Design

There are two base test examples for the ac240. The base test ac240_top_sysclk is delivered as an
example of buffering the acquisition data to a buffer within the FPGA: the DE-Monitor buffer. This
buffer can be read by program. The base test ac240_top_sysclk_mem is identical and contains
additional blocks to control and verify the external optional memories.

5.4.1 Architecture

The drawing below shows the data flow inside the ac240 Base firmware. The converted data from the
ADCs are transmitted as data flows DE-A and DE-B to the data processing FPGA where they are
received by a data entry interface. The data are channeled through the two internal data streamsA and B to
the block user_block_example and dp_ctr_example . The DE-Monitor lies within the block
user_block_example . Monitoring the data stream could be immediate or depending on the arrival of
a trigger, with a trigger precision of 16 ns.

FDK Reference Manual Page 28 of 165

5.4.2 Trigger accuracy versus Sampling Rate

This base design implements the simple trigger block trigger_manager . The trigger accuracy
depends on the sampling rate and on the fact that the channels could be interleaved or not.

Module Two channel mode Single channel mode

AC240 Equal to the sampling period
multiplied by 16 (16ns at 1 GS/s)

Equal to the sampling period multiplied
by 32 (16 ns at 2 GS/s)

5.5 SC240 Base Design

The base streamer example sc240_top_sysclk_str1 is delivered as an example of streaming data
to the front panel optical link by the use of the serial front panel data port interface.

5.5.1 Architecture of the Base Streaming Firmware

The drawing below shows the data flow inside the Base Streaming firmware. The converted data from the
ADCs are transmitted as data flow DE-A and DE-B to the data processing FPGA where they are received
by a data entry interface (includes the DE-Buffer). The data are channeled through the two internal data
streams, A and B, to the streamer example block.

FDK Reference Manual Page 29 of 165

The streamer example block generates, manages, and sends three differents type of frames to the sfpdf
controller slc_controller : the raw data frame, the accumulated data frame, and the parameter data
frame.

The block str1_example and its functions are described with more details in paragraph 6.23. The
block scl1_interface is a simple encapsulation of the core slc_controller and is not
described in details. The core slc_controller is described in details in the paragraph 6.20.

The TX-Monitor Buffer is a spy of the transmitted frames (TX-Frame). It can be read by the user
program.

For verification, the TX output could be looped back to the RX input and the received data could be
monitored with the RX-Monitor Buffer and readout by the user program.

5.5.2 Trigger Positioning Resolution versus Sampling Rate

There are two trigger modes that could be set by program, the standard trigger and the high resolution
trigger. While the standard trigger could be used with any sampling rate, the high resolution trigger
should be enabled only for the following sampling rates:

Module Two channel mode Single channel mode

500 MS/s 1 GS/s 1 GS/s 2 GS/s SC240

2ns 1ns 2ns 1ns

500 MS/s 1 GS/s SC210 Not available

2ns 1ns

Table 5-1 : Valid sampling rates and resolution of the High resolution trigger

The resolution of the standard trigger is 16 samples in non-interleaved operation and 32 samples when the
two channel of the SC240 are interleaved.

FDK Reference Manual Page 30 of 165

5.5.3 Trigger Time Stamp

The trigger Time Stamp is only valid for the high resolution trigger. The Time Stamp resolution is
identical to the trigger positioning resolution.

5.5.4 Front Panel LED Status

5.6 List of Cores Instantiated in Base Designs

Base Design

Core ac
21

0_
to

p_
sy

sc
lk

ac
24

0_
to

p_
sy

sc
lk

ac
24

0_
to

p_
sy

sc
lk

_d
dr

sc
24

0_
to

p
_s

ys
cl

k_
st

r1

Library Description
ac210_user_block �

 ac240_developer_lib Main block for AC210
ac240_user_block

� � ac240_developer_lib

Main block for AC240
acq_ctr_reg � � � � ac240_fdk Main Acqiris control register
acq_tmp_struct � � � � ac240_fdk Interface to the on-chip FPGA temperature

measurement
ck_rst_manager_sysclk � � ac240_fdk

Clock and reset management for designs
without external memory

ck_rst_manager_sysclk
_mem

� ac240_fdk Clock and reset management for designs
with external memory

ck_rst_manager_rg2

 � ac240_fdk Clock and reset management for designs
with Optical Data Link and high resolution
trigger

dac_interface � � � � ac240_fdk Interface to the DAC driving the front-panel
analog output

ddr_ctr_test_only

� ac240_fdk Example of interfacing the user port of the
core ddr_interface

ddr_interface

� ac240_fdk Interface to the DRAM memory banks

ddr_interface_buffer

� ac240_fdk Block handling the Xilinx IO primitive to the
DRAM memory

de_interface_1ch � fdk_lib
Acquisition data stream interface for single
channel module

de_interface_2ch

� � fdk_lib Acquisition data stream interface for dual
channel module

Item Comments
L1 Link 0 Status :

• Red: ODL faulty.

• Green: ODL successfully initialized and active in TX Mode.

• Orange: ODL successfully initialized.

L2 Acquisition Status :

• Orange: transfer disabled

• Green: Transfer & Trigger Enabled

• Red: Transfer Enabled & Trigger received

FDK Reference Manual Page 31 of 165

Base Design

Core ac
21

0_
to

p_
sy

sc
lk

ac
24

0_
to

p_
sy

sc
lk

ac
24

0_
to

p_
sy

sc
lk

_d
dr

sc
24

0_
to

p_
sy

sc
lk

_s
tr

1

Library Description
de_interface_2ch_rg

 ���� fdk_lib Acquisition data stream interface for dual
channel module with Optical Data Link and
high resolution trigger

de_chip_io � � � � fdk_lib Block handling the Xilinx IO primitive to the
data input stream bus

dlink_interface � � � � ac240_fdk Multi-line digital front panel IO interface
dp_ctr_example

� ac240_fdk Example of interfacing the user port of the

core dp_interface
dp_interface

� ac240_fdk Interface to the dual port SRAM memory

dp_interface_io

� ac240_fdk Block handling the Xilinx IO primitive to the
SRAM memory

lb_interface_m � � � � fdk_lib Interface to the Local Bus. The user program
communicates with the FPGA through this
interface.

lb_interface_io � � � � fdk_lib Block handling the Xilinx IO primitive to the
Local Bus

led_interface � � � � ac240_fdk Front panel LED control
pio_interface � � � � ac240_fdk Interface to the MMCX digital IO on the

front-panel
slc1_interface � ac240_fdk Single interface to the optical link
str1_example � ac240_fdk Simple streaming example
trigger_manager � � � ac240_fdk Trigger control
trigger_manager_1ns � ac240_fdk High resolultion trigger control
user_block_example � � � ac240_fdk Example of managing the data stream

5.7 Register List in Base Designs

Base Design

Register
Number

Register
Address

Access
Right

Available in

component ac
21

0_
to

p_
sy

sc
lk

ac
24

0_
to

p_
sy

sc
lk

ac
24

0_
to

p_
sy

sc
lk

_d
dr

sc
24

0_
to

p_
sy

sc
lk

_s
tr

1

Comment

Customer Register Space – Reserved for Definition by Agilent

0 0x2200 RW -- � � � � Indirect Data Port

1 0x2204 RW lb_interface � � � � FPGA Indirect Address

2 0x2208 RW lb_interface � � � � FPGA Buffer Identifier

3 0x220C RW acq_ctr_reg � � � � FPGA Main Control

4 0x2210 R lb_interface � � � � FPGA Code Protection

FDK Reference Manual Page 32 of 165

5 0x2214 Reserved

6 0x2218 R acq_ctr_reg � � � � FPGA Main Status

7 0x221C FPGA Temperature

8 0x2220 RW de_interface_1ch
de_interface_2ch

�

�

�

�
FPGA DE-Bus Control

9 0x2224 RW lb_interface � � � � FPGA Direct Access Block

10-31 -- Reserved

32 0x2280 RW pio_interface � � � � Front Panel PIO Control

33 0x2284 RW dac_interface � � � � Front Panel DAC Control

34 0x2288 RW led_interface � � � � Front Panel LED Control

35 0x228C Reserved

36 0x2290 RW dlink_interface � � � � Front Panel µDB-IO
Control

37 0x2294 RW dlink_interface � � � � Front Panel µDB-IO Output

38 0x2298 R dlink_interface � � � � Front Panel µDB-IO Input

39 0x229C RW dp_interface � Dual Port Memory Control

40 0x22A0 RW dp_interface � Dual Port Memory Test
Pattern

41 0x22A4 R dp_interface � Dual Port Memory Status

42 0x22A8 R dp_interface Dual Port Memory Test
Value

43 0x22AC R dp_interface � Dual Port Memory Test
Result

44 0x22B0 RW ddr_interface � DDR A Control / Status

45 0x22B4 RW ddr_interface � DDR A Self-test Control /
Status

46 0x22B8 R ddr_interface � DDR A Self-test Status 1

47 0x22BC R ddr_interface � DDR A Self-test Status 2

48 0x22C0 R ddr_interface � DDR A Self-test Status 3

49 0x22C4 R ddr_interface DDR A Self-test Status 4

50 0x22C8 R ddr_interface � DDR A Self-test Error
Count

51 0x22CC � Reserved

52 0x22D0 RW ddr_interface � DDR B Control / Status

53 0x22D4 RW ddr_interface � DDR B Self-test Control /
Status

54 0x22D8 R ddr_interface � DDR B Self-test Status 1

55 0x22DC R ddr_interface � DDR B Self-test Status 2

56 0x22E0 R ddr_interface DDR B Self-test Status 3

57 0x22E4 R ddr_interface � DDR B Self-test Status 4

58 0x22E8 R ddr_interface � DDR B Self-test Error
Count

59 0x22EC � Reserved

60 0x22F0 RW ddr_interface � DCM Phase Shift Control /
Status

61-63 Reserved

Customer Register Space for AC2x0 Base Design

64 0x2300 RW user_block_example � � � � Base Design Control

FDK Reference Manual Page 33 of 165

65 0x2304 R user_block_example � � � � Base Design Status

66 0x2308 RW dp_ctr_example � Example of SRAM
Interfacing

67 0x230C RW ddr_ctr_example � Example of DRAM
Interfacing

68-127 -- RW -- Unused

Customer Register Space for SC2x0 Base Design

64 0x2300 RW str1_example � Main Control

65 0x2304 � Unused

66 0x2308 RW str1_example � TX Monitor Control and
Status

67 0x230C RW str1_example � RX Monitor Control and
Status

68-72 � Unused

73 0x2324 RW str1_example � Streamer Configuration

74-79 0x2328 RW � Unused

80-82 0x2340

0x2344

0x2348

RW slc1_interface � SLC Control Link 0
SLC Status Link 0
SLC Signal Link 0

83-127 � Unused

Note: The registers number 64 to 127 shall not be used for another purpose if the corresponding cores
remain in the design.

5.8 Indirect Addressing in AC2x0 Base Designs

The buffers are accessed through the Indirect Data Port at address 0x2200.
Buffer
Identifier

Address
Range

Access
Right

Available in
component

Comment

Customer Register Space – Agilent Reserved
0x00 0x0 to

0x3FFFFFC
RW ddr_interface DDR BANK A, 256 MB

0x01 0x0 to
0x3FFFFFC

RW ddr_interface DDR BANK B, 256 MB

0x04 0x0 to
0xFFFFC

RW dp_interface Dual Port Memory 1MB

0x08 0x0 to
0x1FFC

RW de_interface DE-Buffer, 8K samples per channel

0x0C 0x0 to
0x1FFC

RW user_block_example DE-Monitor, 8K samples per channel

0x00- 0x7F Reserved for Agilent
Customer Register Space – Customer Reserved
0x80-0xFF Reserved for Customer

5.9 Indirect Addressing in SC2x0 Base Designs

The buffers are accessed through the Indirect Data Port at address 0x2200.
Buffer
Identifier

Address
Range

Access
Right

Available in
component

Comment

Customer Register Space – Agilent Reserved
0x08 0x0 to

0x1FFC
RW de_interface DE-Buffer, 8K samples per channel

0x10 0x0 -
0xFFFC

RW str1_example TX-Monitor 64K bytes

0x20 0x0 -
0xFFFC

RW str1_example RX-Monitor 64K bytes

FDK Reference Manual Page 34 of 165

0x00- 0x7F Reserved for Agilent
Customer Register Space – Customer Reserved
0x80-0xFF Reserved for Customer

5.10 Simulation
Complete information about the Acqiris Test Bench environment and the available script commands is
available in chapter 7 VHDL TEST BENCH. There is one Test bench for each base design.

The base design executes the script Control.txt , which invokes the other files listed in the table below.
All scripts associated to a Test bench component are stored within the side data directory of the Test
bench. For the single channel Test bench, this will be:

$AcqirisFdkRoot/lib_projects/ac240_developer_lib/hdlgraphic/base_design_tb/struct.bd.info/Sim/*

Script ac
21

0_
to

p_
sy

sc
lk

_t
b

ac
24

0_
to

p_
sy

sc
lk

_t
b

ac
24

0_
to

p_
sy

sc
lk

_d
dr

_t
b

Description
Control.txt ���� ���� ����

Main script, executesother sub-scripts

Acqiris_Cst.txt ���� ���� ���� Definition of constants for Acqiris_Ctr.txt

Acqiris_Ctr.txt ���� ���� ���� Test script to verify basic function of the cores
that interface to the front-panel I/O

USR_Cst.txt ���� ���� ���� Definition of constants for USR_Ctr.txt

USR_Ctr.txt ���� ���� ���� Test script to verify the IN- and DE-Buffers
and the access to them

USR_TestDDR.txt ���� Script to verify read & write access to the dual
bank DRAM from the user application

USR_TestDDRU.txt ���� Script to verify the read & write access to the
dual bank DRAM within the FPGA through
the user ports

USR_TestDP.txt ���� Script to verify read & write access to the dual
port SRAM from the user application

USR_TestDPU.txt ���� Script to verify read & write access to the dual
port SRAM within the FPGA through the user
ports

5.11 Constraints
Two constraint files are supplied. The “.sdc” constraint file is for the Mentor flow with Precision
Synthesis, while the “.ucf” constraint file is for all other design flows.

The “.sdc” constraint file is located in the side data directory of each base design:

…ac240_developer_lib/hdlgraphic/base_design/struct.bd.info/Synthesis/Constraints/

This file handles clock constraints, FPGA IO timing constraints, and pad location constraints. There are
also additional location constraints for the DCM and BUFG primitives.

Otherwise notified, the “.ucf” constraint file (to be used for all other design flows) is based on the Xilinx
UCF format. This file is generated by Precision Synthesis and is located at:

…ac240_developer_lib/precision/base_design_struct/base_design_struct/

Other constraints, like signaling type and strength, are passed from the VHDL design with attributes.

More details about design flow and file locations can be found in the chapters 8 DESIGN FLOW and 9
VHDL LIBRARIES of this document.

FDK Reference Manual Page 35 of 165

5.12 Interrupt Control
The FPGA is able to generate a hardware interrupt, processing interrupt. It must first be enabled in the
FPGA by setting the bit[0], INTE of the control register of the core acq_ctr_reg to ‘1’. The interrupt
handling can be used by the software with a call to the function AcqrsD1_waitForEndOfProcessing.

The interrupt is managed by the interrupt controller in the PCI interface. The FPGA only has to supply a
signal at the end of the processing.

The example below shows the interrupt to be generated after the DE-Monitor has been filled. The PCI
interface interrupt controller will detect and memorize the rising edge of the signal Buffer_Full. The
signal Buffer_Full can only generate another interrupt after having gone low again.

ac240_fdk/ac240_top_sysclk/structInterrupt Acqiris

FINT_N_int
Interrupt_Enable

Buffer_Full FINT_N

5.13 Resource Utilization

There are more details for each core in chapter 9 VHDL LIBRARIES .

The table below shows the resource usage for the base design ac240_top_sysclk_ddr synthesized
with Precision Synthesis and XST. It is compared to the resources that are available in the target Xilinx
Virtex II Pro – XC2VP70-6FF1517.

PRECISION SYNTHESIS XST

Device Utilization Summary Device Utilization Summary

Logic Utilization Used Available Utilization Logic Utilization Used Available Utilization

Number of Slice Flip Flops 10,994 66,176 16% Number of Slice Flip Flops 11,617 66,176 17%

Number of 4 input LUTs 9,987 66,176 15% Number of 4 input LUTs 11,387 66,176 17%

Logic Distribution Logic Distribution

Number of occupied Slices 10,433 33,088 31% Number of occupied Slices 11,610 33,088 35%

Total Number 4 input LUTs 10,785 66,176 16% Total Number 4 input LUTs 12,450 66,176 18%

Number used as logic 9,987 Number used as logic 11,387

Number used as a route-thru 798 Number used as a route-thru 1,063

Number of bonded IOBs 765 964 79% Number of bonded IOBs 765 964 79%

IOB Flip Flops 1,020 IOB Flip Flops 1,059

IOB Master Pads 10 IOB Master Pads 10

IOB Slave Pads 10 IOB Slave Pads 10

IOB Dual-Data Rate Flops 292 IOB Dual-Data Rate Flops 292

Number of PPC405s 0 2 0% Number of PPC405s 0 2 0%

Number of Block RAMs 45 328 13% Number of Block RAMs 45 328 13%

Number of GCLKs 12 16 75% Number of GCLKs 12 16 75%

Number of DCMs 7 8 87% Number of DCMs 7 8 87%

Number of GTs 0 20 0% Number of GTs 0 20 0%

The table below shows the resource usage for the base design ac240_top_sysclk . It is compared to
the resources that are available in the target Xilinx Virtex II Pro – XC2VP70-6FF1517.

PRECISION SYNTHESIS
Device Utilization Summary
Logic Utilization Used Available Utilization
Number of Slice Flip Flops 3,115 66,176 4%
Number of 4 input LUTs 3,696 66,176 5%

FDK Reference Manual Page 36 of 165

Logic Distribution
Number of occupied Slices 2,907 33,088 8%
Number of Slices containing only related logic 2,907 2,907 100%
Number of Slices containing unrelated logic 0 2,907 0%
Total Number 4 input LUTs 4,024 66,176 6%
Number used as logic 3,696
Number used as a route-thru 328
Number of bonded IOBs 364 964 37%
IOB Flip Flops 355
IOB Master Pads 11
IOB Slave Pads 11
Number of PPC405s 0 2 0%
Number of Block RAMs 19 328 5%
Number of GCLKs 11 16 68%
Number of DCMs 6 8 75%
Number of GTs 0 20 0%

The table below shows the resource usage for the base design ac210_top_sysclk . It is compared to
the resources that are available in the target Xilinx Virtex II Pro – XC2VP70-6FF1517.

PRECISION SYNTHESIS
Device Utilization Summary
Logic Utilization Used Available Utilization
Number of Slice Flip Flops 2,661 66,176 4%
Number of 4 input LUTs 2,958 66,176 4%
Logic Distribution
Number of occupied Slices 2,443 33,088 7%
Number of Slices containing only related logic 2,443 2,443 100%
Number of Slices containing unrelated logic 0 2,443 0%
Total Number 4 input LUTs 3,286 66,176 4%
Number used as logic 2,958
Number used as a route-thru 328
Number of bonded IOBs 235 964 24%
IOB Flip Flops 231
IOB Master Pads 11
IOB Slave Pads 11
Number of PPC405s 0 2 0%
Number of Block RAMs 15 328 4%
Number of GCLKs 10 16 62%
Number of DCMs 6 8 75%
Number of GTs 0 20 0%

5.14 Version History
Date Version Comments

April 05 Beta 1 Initial Version

June 05 Beta 2 Implemented write function to the DE-Buffer and IN-Buffer

Added simulation test script for the DE-Buffer and IN-Buffer

February 06 Beta 6 New base design with external memory interface and external memory

May06 Beta 7 Revised the resources utilization.

January 07 1.0 New SC240 Base Design

FDK Reference Manual Page 37 of 165

6. FDK Core Library
This chapter describes in detail the FPGA cores supplied by Agilent Acqiris. By default, the cores are
instantiated in a base design, showing how they should be instantiated and interconnected. If a core is not
instantiated in one of the base designs, it is marked and typically described in more detail. The chapter on
base designs, 5 Base Design, lists all instantiated cores.

6.1 Index of Available Cores
Core Library Short Description
ac210_user_block ac240_developer_lib User block skeleton for the ac210
ac240_user_block ac240_developer_lib User block skeleton for the ac240
acq_ctr_reg ac240_fdk Standard Agilent Register
acq_tmp_struct ac240_fdk Temperature monitoring
ck_rst_manager_rg2 ac240_fdk Clock management for streamer base

design
ck_rst_manager_sysclk ac240_fdk Clock management for base design

without external memory
ck_rst_manager_sysclk_mem ac240_fdk Clock management for base design with

external memory
dac_interface ac240_fdk Front Panel MMCX analog output control
ddr_interface ac240_fdk Double Data Rate DRAM interface
ddr_ctr_example ac240_fdk Example of driving the DDR memory

interface
de_interface_1ch fdk_lib 1 channel interface for data input from the

ADC multiplexer
de_interface_2ch fdk_lib 2 channel interface for data input from the

ADC multiplexer
de_interface_2ch_rg 2 channel interface for data input from the

ADC multiplexer for streamer application
dlink_interface ac240_fdk Front Panel µDB digital IO control
dp_interface ac240_fdk Dual Port SRAM interface
dp_ctr_example ac240_fdk Example driving the dual port memory

interface
lb_interface_m fdk_lib Local Bus Interface, wrapper to

lb_interface of the library fdk_lib_h
led_interface ac240_fdk Front Panel LED control
pio_interface ac240_fdk Front Panel MMCX digital IO control
slc1_interface ac240_fdk Implementation example of a single link

Serial Front Panel Data Port controller
slc_controller fdk_lib Serial Front Panel Data Port controller
slc1_interface ac240_fdk Single interface to the optical link
str1_example ac240_fdk Simple streamer example
trigger_manager ac240_fdk Trigger control
trigger_manager_1ns ac240_fdk High resolution trigger control
user_block_example ac240_fdk Example of a basic implementation,

including two registers and a buffer to
store data from the incoming acquisition
stream

FDK Reference Manual Page 38 of 165

6.2 Base Clock Manager
The core ck_rst_manager_sysclk is the base clock manager core. This core implements all
resources related to the clocking and the general reset for designs without external memories. It is also the
core to choose for designs using the full capability of the available RocketIO serializers/deserializers.

It provides two global clocks (available everywhere within the Data Processing Unit) that should be used
for the Internal Bus (Lbclkg) and for the User Core (Sysclk). The frequency of Lbclkg is set to 33
MHz whereas Sysclk frequency is fixed at 133 MHz.

The core also provides two clocks for the top and bottom RocketIO instances (Usrclka, Usrclka2,
Usrclkb, and Usrclkb2) with some area restrictions (detailed below).

6.2.1 Functional Description
After the bit file has been loaded, the two clocks Lbclkg and Sysclk begin running. Lbclkg is never
stopped because it handles communication with the PCI bus. Sysclk can be stopped by setting the input
Talarm to ‘ 1’ . This might be useful for shutting down the FPGA or reducing its power consumption in
case its temperature rises above a limit. Apart from this unusual situation Sysclk should not be stopped.
For monitoring the FPGA temperature, please read the descriptions of the cores acq_tmp_struct and
acq_ctr_reg .

Any other clocks are disabled until they are enabled by software. The core acq_ctr_reg contains a
control and a status register for clock control (Enable/Disable) and monitoring (DCM locked).

The Base Clock Manager core is also able to provide all external memory clocks except the clock for the
port B of the SRAM (DPMem_CKB). It is only for this reason that a specific memory clock manager is
provided (ck_rst_manager_sysclk_mem) .

6.2.2 Port Description

Signal Size Type Short Description

User Clock A

REFCKA_p / _n 1 In Clock reference for RocketIO clock generation

Refclka 1 Out Dedicated routing path to Rocket IO instances (Top Edge)

Usrclka2 1 Out Global clock for RocketIO instances (assuming 32-bit data
path)

Usrclka 1 Out Global clock for RocketIO instances (assuming 32-bit data
path)

Usrclka_reset 1 Out Becomes low 8 clocks after Usrclka DCM gets locked

User Clock B

REFCKB_P / _N 1 In Clock reference for bottom RocketIO clocks generation

Refclkb 1 Out Dedicated routing path to Rocket IO instances (Bottom Edge)

Usrclkb2 1 Out Global clock for RocketIO instances (assuming 32-bit data
path)

Usrclkb 1 Out Global clock for RocketIO instances (assuming 32-bit data
path)

Usrclkb_reset 1 Out Becomes low 8 clocks after Usrclkb DCM gets locked

DE-Bus clock

DECLKA 1 In DE-Bus A clock input

DECLKB 1 In DE-Bus B clock input

declkag 1 Out Internal DE-Bus A clock, through BUFG (no DCM)

declkaQg 1 Out Reserved (Range Gate Clocking)

Declka4g 1 Out Reserved (Range Gate Clocking)

Declka4Qg 1 Out Reserved (Range Gate Clocking)

declkbg 1 Out Internal DE-Bus B clock, through BUFG (no DCM)

FDK Reference Manual Page 39 of 165

Signal Size Type Short Description

System Clock

CK33M 1 In Local Bus clock input

Lbclkg 1 Out Copy of CK33M through DCM and BUFG (33 MHz)

Sysclk 1 Out Global Clock 133 MHz

DmemClk 1 Out Main Clock for DDR Controllers (166 MHz)

Talarm 1 In Temperature Alarm input, could be used to reset the DCM that
drives Sysclk

Sel_Fsysclk 1 In Unused

Dual Port Memory Clocks

DPMem_CKA 1 Out Clock for port A of Dual Port Memory (133 MHz)

DPMem_CKFBA 1 In Clock feedback input for Port A of Dual Port Memory

DPMem_CKFBB 1 In Clock feedback input for Port B of Dual Port Memory

DDR Memory Clocks

DmemClk 1 Out Main Clock for DDR Controllers (166 MHz)

DmemClk_PS 1 Out Phase Shifted Clock for DDR Controllers (166 MHz)

DmemClk_FB 1 Out Clock feedback for DDR Controllers (166 MHz)

Dmem_FB_p 1 In Clock feedback input (Differential buffer)

Dmem_FB_n 1 In Clock feedback input (Differential buffer)

Miscellaneous

ENB_DCM

8 In Enable DCM Control. Shall be connected to Enb_DCM output
of the core acq_ctr_reg .

 (2)

(3)

(4)

(0,1,5,6,7)

Enable Usrclka . Clocks for the top edge Rocket
IO instance.

Enable Usrclkb . Clocks for port the bottom
edge Rocket IO instance.

Enable DPMem_CKA. Clock for port A of Dual
Port Memory.

Not used

Lck_DCM 8 Out DCM Lock Status. Shall be connected to Lck_DCM input of the
core acq_ctr_reg .

 (0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

’1’ => Lbclkg locked

’1’ => Sysclk locked

’1’ => Usrclka locked

’1’ => Usrclkb locked

’1’ => DPMem_CKA locked

’1’ => NU

’1’ => DmemClk_PS locked

’1’ => DmemClk_FB locked

Dreset 1 Out General reset. XRESETN delayed by 12 periods of lbclkg .

Dreset_n 1 Out Dreset inverted

6.2.3 DCM Location Constraints
The following location constraints must be applied:

DCM Allocation Comments

FDK Reference Manual Page 40 of 165

Top side DCM

X0Y0 Dual Port Memory Used for Dual Port Memory Clock A

X1Y0 DDR Clock Feedback Used for DDR Controller. (Memory Option)

X2Y0 MGT Reference Clocks B Used for RocketIO for SC Hi-Rate

X3Y0 Main Clocks Used to generate Lbclkg / MemClk

Bottom side DCM

X0Y1 Unused Unused

X1Y1 DDR Phase Shifted Clock Used for DDR Controller. (Memory Option)

X2Y1 MGT Reference Clocks A Used for RocketIO for all SC Modules

X3Y1 User Clocks Used to generate Sysclk .

6.2.4 BUFG Location Constraints
The following location constraints must be applied:

Clock PAD Allocation Comments

Top side BUFG

BUFG0S DeclkA Data Entry Clock A

BUFG1P Unused --

BUFG2S Usrclka User clock for MGT (125 MHz)

BUFG3P Usrclka2 User clock for MGT (62.5 MHz)

BUFG4S Lbclk2_fb Not available. Local clock for generation of
Sysclk .

BUFG5P Sysclk Global Clock for Processing (133 MHz)

BUFG6S DmemClk_PS DDR Clock Phase Shifted (Memory Option)

BUFG7P DeclkB Data Entry Clock B

Bottom side BUFG

BUFG0P DmemClk DDR Main Clock (Memory Option)

BUFG1S Lbclkg Internal Bus Clock – Global Clock

BUFG2P Usrclkb User clock for MGT (125 MHz)

BUFG3S Usrclkb2 User clock for MGT (62.5 MHz)

BUFG4P DmemClk_FB DDR Clock Feedback (Memory Option)

BUFG5S Unused --

BUFG6P Lbck2_int Not available. Local clock for generation of
Sysclk .

BUFG7S DP_CKB_int_A Not available. Local clock for generation of
the SRAM memory clock.

6.2.5 Area Restrictions
The two clocks Lbclkg and Sysclk are distributed throughout the whole FPGA. This reduces the
number of available clocking lines to 14. Firmware for the SC or AC Analyzers could use up to 14
different clocks domains with the area restrictions described below.

As stated by the Xilinx rules, any quarter of the FPGA can be fed with only up to 8 different clocks.

As much as possible, the User Core should only use the two main clocks Lbclkg and Sysclk . The
other clocks are used by the Agilent Acqiris-supplied cores.

Signal NW NE SW SE

Lbclkg [BUFG1S] [BUFG1S] [BUFG1S] [BUFG1S]

Sysclk [BUFG5P] [BUFG5P] [BUFG5P] [BUFG5P]

FDK Reference Manual Page 41 of 165

DmemClk [BUFG0P] [BUFG0P]
DmemClk_PS [BUFG6S] [BUFG6S]
DmemClk_FB [BUFG4P] [BUFG4P]
DeclkA [BUFG0S] [BUFG0S]

DeclkB [BUFG7P] [BUFG7P]
UsrCka [BUFG2S] [BUFG2S]

UsrCka2 [BUFG3P] [BUFG3P]

UsrCkb [BUFG2P] [BUFG2P]
UsrCkb2 [BUFG3S] [BUFG3S]
Lbclk2_int [BUFG6P]
Lbclk2_fb [BUFG4S]
DP_CKB_int_A [BUFG7S]

6.2.6 Clock Period Constraints
All the DCM, BUFG, IBUFG, and IBUFGDS instantiated for the clocking scheme are using “LOC”
constraints to freeze the clock distribution, whatever the User firmware. For more details, please refer to
the location constraints files of the Base Designs.

The IO_STANDARD as well as other constraints are enclosed in the VHDL design and are passed to the
synthesizer as VHDL attributes. The synthesizer itself must transfer these constraints on to ISE.

The following clock period constraints must be applied:

Pad Name Period Comment

CK33M 28 ns Continuous Clock (issued from PCI)

DECLKA 14 ns Frequency depends on the acquisition settings

DECLKB 14 ns Frequency depends on the acquisition settings

REFCKA_p 7.5 ns For SC2x0 (driven by an external PLL)

REFCKB_p 7.5 ns For SC2x0 (driven by an external PLL)

DMEM_FB_p 6 ns For DDR Controller

Note: The synthesizer must be able to propagate these clock constraints down to the clocks generated
from the DCM settings.

6.2.7 Resource Utilization
Resource count and relative usage in the target Xilinx Virtex II Pro – XC2VP70-6FF1517:

Resources Used Available Utilization
DCM 6 8 75 %

Global Buffers (BUFG) 13 16 81 %

Function Generators 10 66176 ~0 %

CLB Slices 20 33088 ~0 %

Dffs or Latches 40 69068 ~0 %

6.2.8 Version History

Date FDK Version Comments
April 05 Beta 1 Initial Version

FDK Reference Manual Page 42 of 165

Date FDK Version Comments
July 05 Beta 3 New Clocking Scheme for Memory Options

September 05 Beta 5 Removed the capability to select the sysclk source. Sysclk is fixed to 133
MHz.

February 06 Beta 6 Added another clock core for design with memory option:
ck_rst_manager_sysclk_mem

May 06 Beta 7 Update core description

FDK Reference Manual Page 43 of 165

6.3 Memory Option Clock Manager
The core ck_rst_manager_sysclk_mem implements all resources related to the clocking and the
general reset for designs including the memory option.

It provides two global clocks (available everywhere within the Data Processing Unit) that should be used
for the Internal Bus (Lbclkg) and for the User Core (Sysclk). The frequency of Lbclkg is set to 33
MHz whereas Sysclk frequency is fixed to 133 MHz.

The core provides the clocks for the external memories (DPA_CLK, DPB_CLK) and for the core
ddr_interface (DmemClk, DMemClk_FB, and DMemClk_PS). The clocks to the DRAM
memory are driven by the core ddr_interface_buffer (DDRA_CK, DDRB_CK).

It also provides two clocks for the top RocketIO instances (Usrclka, Usrclka2) with some area
restrictions (detailed below). It does not supply clocks for the bottom RocketIO.

6.3.1 Functional Description
After the bit file has been loaded, the two clocks Lbclkg and Sysclk begin running. Lbclkg is never
stopped because it handles communication to the PCI bus. Sysclk can be stopped by setting the input
Talarm to ‘1’. This might be useful for shutting down the FPGA or reducing its power consumption in
case its temperature rises above a limit. Apart from this unusual situation, Sysclk should not be
stopped. For monitoring the FPGA temperature, please read the description of the cores
acq_tmp_struct and acq_ctr_reg .

The clocks for the DRAM will be active some time after Sysclk begins running. There is no way to
stop the DDR clocks other than to disable Sysclk . The phase of the clocks DMemClk_FB and
DMemClk_PS are calibrated during the DDR calibration phase (see the core ddr_interface).

The clocks for the DRAM and the RocketIO are disabled until they are enabled by software. The core
acq_ctr_reg contains a control and a status register for clock control (Enable/Disable) and monitoring
(DCM locked).

6.3.2 Port Description

Signal Size Type Short Description

User Clock A

REFCKA_p / _n 1 In Clock reference for RocketIO clock generation

Refclka 1 Out Dedicated routing path to Rocket IO instances (Top Edge)

Usrclka2 1 Out Global Clock for RocketIO instances (assuming 32-bit data
path)

Usrclka 1 Out Global Clock for RocketIO instances (assuming 32-bit data
path)

Usrclka_reset 1 Out Becomes low 8 clocks after Usrclka DCM gets locked

User Clock B

REFCKB_P / _N 1 In Clock reference for bottom RocketIO clocks generation

Refclkb 1 Out Dedicated routing path to Rocket IO instances. (Bottom Edge)

Usrclkb2 1 Out Global Clock for RocketIO instances (assuming 32-bits data
path)

Usrclkb 1 Out Global Clock for RocketIO instances (assuming 32-bits data
path)

Usrclkb_reset 1 Out Becomes low 8 clocks after Usrclkb DCM gets locked.

DE-Bus clock

DECLKA 1 In DE-Bus A clock input

DECLKB 1 In DE-Bus B clock input

declkag 1 Out Internal DE-Bus A clock, through BUFG (no DCM)

declkaQg 1 Out Reserved (Range Gate Clocking)

Declka4g 1 Out Reserved (Range Gate Clocking)

FDK Reference Manual Page 44 of 165

Signal Size Type Short Description

Declka4Qg 1 Out Reserved (Range Gate Clocking)

declkbg 1 Out Internal DE-Bus B clock, through BUFG (no DCM)

System Clock

CK33M 1 In Local Bus clock input

lbclkg 1 Out Copy of CK33M through DCM and BUFG (33 MHz)

Sysclk 1 Out Global Clock 133 MHz

DmemClk 1 Out Main Clock for DDR Controllers (166 MHz)

Talarm 1 In Temperature Alarm input, could be used to reset the DCM that
drives Sysclk

Sel_Fsysclk 1 In Unused

Dual Port Memory Clocks

DPMem_CKA 1 Out Clock for port A of Dual Port Memory (133 MHz)

DPMem_CKB 1 Out Clock for port B of Dual Port Memory (133 MHz)

DPMem_CKFBA 1 In Clock feedback input for Port A of Dual Port Memory.

DPMem_CKFBB In Clock feedback input for Port B of Dual Port Memory.

DDR Memory Clocks

DmemClk 1 Out Main Clock for DDR Controllers (166 MHz)

DmemClk_PS 1 Out Phase Shifted Clock for DDR Controllers (166 MHz)

DmemClk_FB 1 Out Clock feedback for DDR Controllers (166 MHz)

Dmem_FB_p 1 In Clock feedback input (Differential buffer)

Dmem_FB_n 1 In Clock feedback input (Differential buffer)

Dcm_ckfb_* In/
Out

Control for DmemClk_FB phase calibration

Dcm_ckps_* In/
Out

Control for DmemClk_PS phase calibration

DmemClk_
reset_n

 Out Reset for the core ddr_interface

Miscellaneous

ENB_DCM

8 In Enable DCM Control. Shall be connected to Enb_DCM output
of the core acq_ctr_reg .

 (2)

(4)

(5)

(0,1,3,6,7)

Enable Usrclka . Clocks for the top edge Rocket
IO instance.

Enable DPMem_CKA. Clock for port A of Dual
Port Memory.

Enable DPMem_CKB. Clock for port B of Dual
Port Memory.

Not used

Lck_DCM 8 Out DCM Lock Status. Shall be connected to Lck_DCM input of the
core acq_ctr_reg .

 (0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

’1’ => Lbclkg locked

’1’ => Sysclk locked

’1’ => Usrclka locked

’1’ => NU

’1’ => DPMem_CKA locked

’1’ => DPMem_CKB locked

’1’ => DmemClk_PS locked

FDK Reference Manual Page 45 of 165

Signal Size Type Short Description

’1’ => DmemClk_FB locked

Dreset 1 Out General reset. Is XRESETN delayed by 12 periods of lbclkg .

Dreset_n 1 Out Dreset inverted

6.3.3 DCM Location Constraints
The following location constraints shall be applied.

DCM Allocation Comments

Top side DCM

X0Y0 Dual Port Mem ClkA Used for Dual Port Memory Clock A

X1Y0 DDR Clock Feedback Used for DDR Controller. (Memory Option)

X2Y0 MGT Reference Clocks B Used for RocketIO for SC Hi-Rate

X3Y0 Main Clocks Used to generate Lbclkg / MemClk

Bottom side DCM

X0Y1 Unused Unused

X1Y1 DDR Phase Shifted Clock Used for DDR Controller. (Memory Option)

X2Y1 MGT Reference Clocks A Used for RocketIO for all SC Modules

X3Y1 User Clocks Used to generate Sysclk .

6.3.4 BUFG Location Constraints
The following location constraints shall be applied.

Clock PAD Allocation Comments

Top side BUFG

BUFG0S DeclkA Data Entry Clock A

BUFG1P Unused --

BUFG2S Usrclka User clock for MGT (125 MHz)

BUFG3P Usrclka2 User clock for MGT (62.5 MHz)

BUFG4S Lbclk2_fb Not available. Local clock for generation of
Sysclk .

BUFG5P Sysclk Global Clock for Processing (133 MHz)

BUFG6S DmemClk_PS DDR Clock Phase Shifted (Memory Option)

BUFG7P DeclkB Data Entry Clock B

Bottom side BUFG

BUFG0P DmemClk DDR Main Clock (Memory Option)

BUFG1S LBClk Internal Bus Clock – Global Clock

BUFG2P DP_CKB_int_B Not available. Local clock for generation of
the SRAM memory clock.

BUFG3S Unused --

BUFG4P DmemClk_FB DDR Clock Feedback (Memory Option)

BUFG5S Unused --

BUFG6P Lbck2_int Not available. Local clock for generation of
Sysclk .

BUFG7S DP_CKB_int_A Not available. Local clock for generation of
the SRAM memory clock.

FDK Reference Manual Page 46 of 165

6.3.5 Area Restrictions
The two clocks Lbclkg and Sysclk are distributed throughout the whole FPGA. This reduces the
number of available clocking lines to 14. Firmware for the SC or AC Analyzers could use up to 14
different clocks domains with the area restrictions described below.

As stated by the Xilinx rules, any quarter of the FPGA can be fed with only up to 8 different clocks.

As much as possible, the User Core should only use the two main clocks Lbclkg and Sysclk . The
other clocks are used by the Agilent Acqiris-supplied cores.

Signal NW NE SW SE

Lbclk [BUFG1S] [BUFG1S] [BUFG1S] [BUFG1S]

Sysclk [BUFG5P] [BUFG5P] [BUFG5P] [BUFG5P]

DmemClk [BUFG0P] [BUFG0P]
DmemClk_PS [BUFG6S] [BUFG6S]
DmemClk_FB [BUFG4P] [BUFG4P]
DeclkA [BUFG0S] [BUFG0S]

DeclkB [BUFG7P] [BUFG7P]
UsrCka [BUFG2S] [BUFG2S]

UsrCka2 [BUFG3P] [BUFG3P]

DP_CKB_int_B [BUFG2P] [BUFG2P]
Unused [BUFG3S] [BUFG3S]
Lbclk2_int [BUFG6P]
Lbclk2_fb [BUFG4S]
DP_CKB_int_A [BUFG7S]

6.3.6 Clock Period Constraints
All the DCM, BUFG, IBUFG, and IBUFGDS instantiated for the clocking scheme are using “LOC”
constraints to freeze the clock distribution, whatever the User firmware. For more details, please refer to
the location constraints files of the Base Designs.

The IO_STANDARD as well as other constraints are enclosed in the VHDL design and are passed to the
synthesizer as VHDL attributes. The synthesizer itself must transfer these constraints on to ISE.

The following clock period constraints must be applied:

Pad Name Period Comment

CK33M 28 ns Continuous Clock (issued from PCI)

DECLKA 14 ns Frequency depends on the acquisition settings

DECLKB 14 ns Frequency depends on the acquisition settings

REFCKA_p 7.5 ns For SC2x0 (driven by an external PLL)

DMEM_FB_p 6 ns For DDR Controller

Note: The synthesizer must be able to propagate these clock constraints down to the clocks generated
from the DCM settings.

6.3.7 Resource Utilization
Resource count and relative usage in the target Xilinx Virtex II Pro – XC2VP70-6FF1517:

Resources Used Available Utilization
DCM 7 8 87.5%

Global Buffers (BUFG) 13 16 81 %

Function Generators 12 66176 ~0 %

CLB Slices 25 33088 ~0 %

FDK Reference Manual Page 47 of 165

Resources Used Available Utilization
Dffs or Latches 49 69068 ~0 %

6.3.8 Version History

Date FDK Version Comments
February 06 Beta 6 Initial version.

May06 Beta 7 Description updated.

FDK Reference Manual Page 48 of 165

6.4 Streamer Clock Manager
The core ck_rst_manager_rg2 is the clock manager for streamer application that includes the high
resolution trigger core trigger_manager_1ns . It is instantiated in the streamer base design.

It provides two global clocks (available everywhere within the Data Processing Unit) that should be used
for the Internal Bus (Lbclkg) and for the User Core (Sysclk2). The frequency of Lbclkg is set to 33
MHz whereas Sysclk2 frequency is fixed at 133 MHz.

The core also provides two clocks for the top RocketIO instances (Usrclka, Usrclka2) with some
area restrictions (detailed below).

The core also provides clocks for the data-entry interface and for the high resolution trigger interpolator
(declkbg, declkb4g, and declkb4Qg). These clocks shall only be used for the data entry
interface and for the high resolution trigger core. These clocks shall be enabled and could be phase
adjusted by program using the register Trigger Control of the core trigger_manager_1ns .

After the bit file has been loaded, the two clocks Lbclkg and Sysclk begin running. Lbclkg is never
stopped because it handles communication with the PCI bus. Sysclk can be stopped by setting the input
Talarm to ‘ 1’ . This might be useful for shutting down the FPGA or reducing its power consumption in
case its temperature rises above a limit. Apart from this unusual situation Sysclk should not be stopped.
For monitoring the FPGA temperature, please read the descriptions of the cores acq_tmp_struct and
acq_ctr_reg .

Any other clocks are disabled until they are enabled by software. The core acq_ctr_reg contains a
control and a status register for clock control (Enable/Disable) and monitoring (DCM locked).

NOTE Because DCM are used for generation of all clocks DeclkX , this core should be used only for
ADC sampling rate of 500 MS/s and 1 GS/s (in interleaved mode, this is equal to a sampling rate
of 1 GS/s and 2 GS/s). For lower sampling rates, the DCM will unlock and the behavior will not
be guaranteed. Lower sampling rates can be implemented by sparsing the data within the
firmware.

6.4.1 Port Description

Signal Size Type Short Description

User Clock A

REFCKA_p / _n 1 In Clock reference for RocketIO clock generation

Refclka 1 Out Dedicated routing path to Rocket IO instances (Top Edge)

Usrclka2 1 Out Global clock for RocketIO instances (assuming 32-bit data
path)

Usrclka 1 Out Global clock for RocketIO instances (assuming 32-bit data
path)

Usrclka_reset 1 Out Becomes low 8 clocks after Usrclka DCM gets locked

DE-Bus clock

DECLKA 1 In DE-Bus A clock input

DECLKB 1 In DE-Bus B clock input

declkag 1 Out Internal DE-Bus A clock

declkbg 1 Out Internal DE-Bus B clock

declkbQg 1 Out Reserved (HiRes trigger Clocking)

Declkb4g 1 Out Reserved (HiRes trigger Clocking)

Declkb4Qg 1 Out Reserved (HiRes trigger Clocking)

High resolution trigger DCM phase asjustment

DcmRG_PS_Cor 8 In Phase value

DcmRG_Rst 1 In Reset Phase

Dcm_RG_PDone 1 Out Phase Done

System Clock

FDK Reference Manual Page 49 of 165

Signal Size Type Short Description

CK33M 1 In Local Bus clock input

lbclkg 1 Out Copy of CK33M through DCM and BUFG (33 MHz)

Sysclk 1 Out Clock 66 MHz

Sysclk2 1 Out Global Clock 133 MHz

Talarm 1 In Temperature Alarm input, could be used to reset the DCM that
drives Sysclk

Miscellaneous

ENB_DCM

8 In Enable DCM Control. Shall be connected to Enb_DCM output
of the core acq_ctr_reg .

 (1)

(0, 2 to 7)

Enable Usrclka . Clocks for the top edge Rocket
IO instance.

Not used

Lck_DCM 8 Out DCM Lock Status. Shall be connected to Lck_DCM input of the
core acq_ctr_reg .

 (0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

’1’ => Lbclkg locked

’1’ => Sysclk locked

’1’ => Usrclka locked

Equal to Enb_DCM(3)

’1’ => declkbg and declkbQg locked

’1’ => declkb4g and declkb4Qg locked

Equal to Enb_DCM(4)

Always ‘1’

Dreset 1 Out General reset. Is XRESETN delayed by 12 periods of lbclkg .

Dreset_n 1 Out Dreset inverted

XRESETN 1 In General reset

6.4.2 DCM Location Constraints
The following location constraints must be applied:

DCM Allocation Comments

Top side DCM

X0Y0 Unused Unused

X1Y0 Unused Unused

X2Y0 Internal Bus Clocks Used to generate Lbclkg

X3Y0 Global system clock Used to generate Sysclk and Sysclk2 .

Bottom side DCM

X0Y1 Unused Unused

X1Y1 MGT Reference Clocks A Used for RocketIO for the simple streamer

X2Y1 Data entry clock Used for de_interface declkbg and
declkbQg .

X3Y1 Trigger manager clocks Used for declkb4g and declkb4Qg

6.4.3 BUFG Location Constraints
The following location constraints must be applied:

FDK Reference Manual Page 50 of 165

Clock PAD Allocation Comments

Top side BUFG

BUFG0S Declkb4g Data Entry Clock B times 4

BUFG1P Declkbg Data Entry Clock B

BUFG2S DeclkbQg Data Entry Clock B in quadrature

BUFG3P Declkb4Qg Data Entry Clock B times 4 in quadrature

BUFG4S Usrclka2 User clock for MGT (62.5 MHz)

BUFG5P Usrclka User clock for MGT (62.5 MHz)

BUFG6S Trigger This BUFG is instantiated in the core
trigger_manager_1ns

BUFG7P Unused --

Bottom side BUFG

BUFG0P Sysclk Clock for Processing (66 MHz)

BUFG1S Unused --

BUFG2P Sysclk2 Global Clock for Processing (133 MHz)

BUFG3S Lbck2_int Not available. Local clock for generation of
Sysclk .

BUFG4P Unused --

BUFG5S Unused --

BUFG6P Unused --

BUFG7S Lbclkg Internal Bus Clock – Global Clock

6.4.4 Area Restrictions
The two clocks Lbclkg and Sysclk2 are distributed throughout the whole FPGA. This reduces the
number of available clocking lines to 14. Firmware for the SC or AC Analyzers could use up to 14
different clocks domains with the area restrictions described below.

As stated by the Xilinx rules:

• Any quarter of the FPGA can be fed with only up to 8 different clocks.

• Facing BUFG could not access the same quadrant.

As much as possible, the User Core should only use the two main clocks Lbclkg and Sysclk2 . The
other clocks are used by the Agilent Acqiris-supplied cores.

Sysclk2 is a global clock because the facing BUFG handle the clock declkbQg which drives no
ressources at the exception of the feedback loop of a DCM.

Sysclk could access all quadrants except the NE quadrant. Only one of clock Sysclk and Sysclk2
can be the global clock. The choice here is to have the faster clock as the global clock. This could be
modified by using the BUFG 2P for Sysclk and 0P for Sysclk2 . In this case, Sysclk will be global
and Sysclk2 will not.

--

7S 6P 5S 4P 3S 2P 1S 0P

7P 6S 5P 4S 3P 2S 1P 0S

Lbclkg -- -- -- -- (Lbclk2) Sysclk2 Sysclk

Trigger Usrclka Usrclka2 DeclkbQ4g DeclkbQg Declkbg Declkb4g

NW

SW

NE

SE

FDK Reference Manual Page 51 of 165

All the DCM, BUFG, IBUFG, and IBUFGDS instantiated for the clocking scheme are using “LOC”
constraints to freeze the clock distribution, whatever the User firmware.

The IO_STANDARD, the BUFG location, as well as other constraints are enclosed in the VHDL design
and are passed to the synthesizer as VHDL attributes. The synthesizer itself must transfer these
constraints on to ISE.

6.4.5 Clock Period Constraints

The following clock period constraints must be applied:

Pad Name Period Comment

CK33M 28 ns Continuous Clock (issued from PCI)

DECLKA 14 ns Frequency depends on the acquisition settings

REFCKA_p 7.5 ns For SC2x0 (driven by an external PLL)

Note: The synthesizer must be able to propagate these clock constraints down to the clocks generated
from the DCM settings.

6.4.6 Resource Utilization

Resource count and relative usage in the target Xilinx Virtex II Pro – XC2VP70-6FF1517:

Resources Used Available Utilization
DCM 5 8 62.5 %

Global Buffers (BUFG) 10 16 62.5 %

Function Generators 51 66176 0.08 %

CLB Slices 26 33088 0.08 %

Dffs or Latches 43 69068 0.06 %

6.4.7 Version History

Date FDK Version Comments
January 07 1.0 New core for the Streamer Base Design

FDK Reference Manual Page 52 of 165

6.5 User Block Skeleton
The component ac240_user_block is the skeleton to complete when designing firmware for the
AC240 or SC240. The component ac210_user_block is the equivalent for the AC210 and SC210;
only the connections of the second channel are removed.

Each User Block is essentially empty, but has almost all possible IO connections to the other cores that
are instantiated in the Base Designs. All output signals are set to their default state.

The external µdB Signal IOs are configurable by the customer and thus should be adapted to the
requirements.

The two User Block skeletons reside in the library ac240_fdk as well as in the library
developer_lib . Developers should only modify those in developer_lib or a copy of it.

6.5.1 Port Description

Port Name Size Type Default Description

IB_Customer
IB_Dirsel
IB_Write
IB_Valid
IB_Rdy
IB_TimeO
IB_End
IB_IndirCtr
IB_Addr
IB_DataW
IB_DataR

1
1
1
1
1
1
1
32
32
32
32

In
In
In
In
Out
In
Out
In
In
In
Out

’0’

’0’

all ‘0’

Should be connected to the IB-BUS signal with
the same name. For details, please refer to the
description of the IB-BUS.

Internal Bus

IB_Clk 1 In Internal Bus Clock

Reset 1 In Start Up Reset

Enable_Trigger 1 Out ‘0’ Trigger Enable to the Trigger core

SP_Data_A 128 In Samples from channel A

SP_Data_Val_A 1 In Data valid from channel A

Sp_first_A 4 In Position of the trigger in the data block

SP_Data_B 128 In Samples from channel B (AC240 only)

SP_Data_Val_B 1 In Data valid from channel B (AC240 only)

SP_Trigger 1 In Trigger marker

Sysclk 1 In System clock

Big-Endian 1 In Input control
‘1’ for Big-Endian, ‘0’ for little-Endian ‘0’

DAC Controller

DA_Data 16 Out ‘0’ Data Output to the DAC interface

DA_Write 1 Out ‘0’ Write strobe for Data Output to the DAC interface

DA_Done 1 In ‘1’ when done writing to the DAC interface

DA_Busy 1 In ‘1’ when the DAC interface is busy

MMCX IO Controller

io1_dir 1 Out ‘1’ Direction control for IO1 line if not overridden by
Register Control

io1_in 1 In Input from IO1 line if not overridden by Register
Control

io1_out 1 Out ‘0’ Signal to output on IO1 line if not overridden by
Register Control

FDK Reference Manual Page 53 of 165

Port Name Size Type Default Description
io2_dir 1 Out ‘1’ Direction control for IO2 line if not overridden by

Register Control

io2_in 1 In Input from IO2 line if not overridden by Register
Control

io2_out 1 Out ‘0’ Signal to output on IO2 line if not overridden by
Register Control

IO_Fct_Usr 32 Out All ‘0’ User-defined signals to be multiplexed on the PIO
Outputs

LED Controller

Li1_CCd 2 Out All ‘0’ User control for front panel LED L1

Li2_CCd 2 Out All ‘0’ User control for front panel LED L2

µDB Controller

DIO_in 7 In 7 inputs from µDB front panel connector.
Arbitrarily set to input. Developers may modify
this choice as required.

DIO_out 7 Out All ‘0’ 7 outputs to µDB front panel connector.
Arbitrarily set to input. Developers may modify
this choice as required.

6.5.2 Version History

Date Version Comments
April 05 Beta 1 Initial Version.

May 06 Beta 7 Description updated.

FDK Reference Manual Page 54 of 165

6.6 User Block Example
The core user_block_example is delivered as an example in the Base Design. It has a built-in
buffer, the IN-Buffer, capable of storing 8K samples per channel from the internal data stream. The IN-
Buffer contents can be displayed with the application AcqirisAnalyzers.

There is a control register to configure the mode of operation and a status register indicating if the IN-
Buffer is full.

This component can be found in the library ac240_fdk as well as in the library developer_lib. Developers
should only modify the one in developer_lib or a copy of it.

6.6.1 Functional Description
The configuration of the user firmware is typically done after the continuous acquisition has been started.
The operating mode of the IN-Buffer must be configured either to triggered, by setting the bit
Triggered of the control register to ‘0’, or to non-triggered by setting the bit Triggered to ‘1’.
Filling the IN-Buffer is enabled by setting the bit Start in the control register to ‘1’.

Filling the IN-Buffer will start either immediately or after a trigger occurred. The bit Full of the status
register will be set ‘1’ after the IN-Buffer has been completely filled. The signal Buffer_full reflects
the state of the bit Full .

Reading the IN-Buffer should begin only after the buffer has been filled, i.e. Full is ‘1’. Before reading
the IN-Buffer you should select the read mode, either CHA, CHB, or interleaved, by setting the bits
InRwMode to the desired value. In the case of AC210 or SC210, the mode should be set to CHA.

The bit Full of the status register and the signal Buffer_full from the User Block will be reset to ‘0’
after the bit Start in the control register is set back to ‘0’.

One could use the signal Buffer_full to generate an interrupt.

6.6.2 Port Description

Port Name Size Type Description
IB_Customer
IB_Dirsel
IB_Write
IB_Valid
IB_Rdy
IB_TimeO
IB_End
IB_IndirCtr
IB_Addr
IB_DataW
IB_DataR

1
1
1
1
1
1
1
32
32
32
32

In
In
In
In
Out
In
Out
In
In
In
Out

Should be connected to the IB-BUS signal with the same
name. For details, please refer to the description of the IB-
BUS.

IB_Clk 1 In Internal Bus Clock

FDK Reference Manual Page 55 of 165

Port Name Size Type Description
Reset 1 In Start Up Reset

Enable_Trigger 1 Out Trigger Enable to the Trigger core

SP_Data_A 128 In Samples from channel A

SP_Data_Val_A 1 In Data valid from channel A

Sp_first_A 4 In Position of the trigger in the data block

SP_Data_B 128 In Samples from channel B (AC240 only)

SP_Data_Val_B 1 In Data valid from channel B (AC240 only)

SP_Trigger 1 In Trigger marker

Sysclk 1 In System clock

Big-Endian 1 In Input control
‘1’ for Big-Endian, ‘0’ for little-Endian

SW_LED 1 Out Software LED control

Full 1 Out Buffer Status, ‘1’ for full. The activity of this signal is
controlled by the bit LED of the control register. It should
be set to ‘1’ to enable the output.

Test 16 Out Test signals output for monitoring

DA_Data 16 Out Data Output to the DAC interface

DA_Write 1 Out Write strobe for Data Output to the DAC interface

DA_Done 1 In ‘1’ when write done from the DAC interface

DA_Busy 1 In ‘1’ when the DAC interface is busy

6.6.3 Registers

6.6.3.1 User Control Register
Register Space Register Number Register Address

Customer 64 0x2300

31..13 12 11 10 9..8

 Start Triggered

7..6 5..4 3..1 0

 InRWMode LED

[0] LED RW Software LED control for front-panel LED L1. This bit also controls
the activity on the output signal Full . LED must be set to ‘1’ to
enable the signal Full .

[5..4] InRWMode RW Configure IN-Buffer for read and write operation

 00
01
10

Channel A
Channel B (AC240 only)
Channel A and B Interleaved (A0,B0,A1,B1…) (AC240 only)

[10] Triggered RW Select triggered or non-triggered mode

 0

1

Sample will be stored to the IN-Buffer immediately after the
Start is issued.
Sample will be stored to the IN-Buffer after next Trigger
following the Start.

[12] Start RW Start acquiring immediately if the bit Triggered is set to ‘0’, or
after the first trigger occurrence if the bit Triggered is set to ‘1’.

Start must be maintained ‘1’ until the buffer is read.

FDK Reference Manual Page 56 of 165

6.6.3.2 User Status Register
Register Space Register Number Register Address

Customer 65 0x2304

31 30..0

Full

[31] Full R Buffer full. It becomes ‘1’ after the buffer has become full. It is
cleared when the bit Start returns to ‘0’, enabling a new acquisition to
start.

6.6.4 Accessing the IN-Buffer
The IN-Buffer can be read using the Indirect Addressing register. The IN-Buffer contains 8K samples per
channel. The Indirect Address Register and Buffer Identifier Register should be set prior to reading or
writing the IN-Buffer.

6.6.4.1 IN-Buffer
Register Space Register Number Register Address Buffer Identifier

Customer 0 0x2200 0x0C

31..24 23..16 15..8 7..0

D3 D2 D1 D0

[31..0] D3 - D0 RW The bytes D0-D3 each correspond to an 8-bit sample.

The order, big or little Endian, is configured in the Acqiris general
control register (see the core acq_ctr_reg).

6.6.5 Resource Utilization
Resource count and relative usage in the target Xilinx Virtex II Pro – XC2VP70-6FF1517:

Resources Used Available Utilization
Function Generators 738 66176 1.1%

CLB Slices 369 33088 1.1%

Dffs or Latches 219 69068 0.3%

Block RAMs 8 328 2.4%

6.6.6 Version History

Date FDK Version Comments
June 05 Beta 2 Implemented write function to the IN-Buffer.

April 05 Beta 1 Initial Version.

May 06 Beta 7 Description updated.

FDK Reference Manual Page 57 of 165

6.7 Local Bus Interface
The core lb_interface_m is the FPGA interface to the Local Bus. Its source is not open. Agilent
delivers a compiled version for Modelsim and an EDIF file for ISE.

This core also contains a firmware identifier used by the driver to prevent unauthorized use of the
firmware. For details, refer to the section 6.7.5 PROTECTION OF FIRMWARE CODE.

Examples of standard target components handling single and burst transfers can be found among the cores
lb_iotarget_* in the library fdk_lib .

The Local Bus and Internal Bus protocols were described in detail in sections 4.4 LOCAL BUS and 4.5
INTERNAL BUS.

6.7.1 Functional Description
The queries from the PCI interface are decoded and generate transactions to the Internal-Bus, IB bus. The
dialog is very simple, based on a selection signal passed along with address, data, and direction. The core
lb_interface_m waits for the acknowledgement (IB_Ready & IB_End) to end the transaction.

The Local Bus interface is entirely synchronous to the PCI clock, always running at 33 MHz.

Two access types have been defined, Direct and Indirect. The Direct Access type directly reads or writes
a single 32-bit word, while Indirect Access handles large data buffers.

The Local Bus interface contains a number of data pipelines. If a data read operation is the continuation
of a previous read (i.e. is initiated without a new address), then the Local Bus interface will present the
data in the pipelines until they are empty. Only at that point will the Local Bus interface request more
data from the internal target.

For example if Indirect Access is used in non-DMA mode, each read will be a single read. The first read
transaction will fill the entire pipeline; the subsequent ones will read the pipeline until empty and then
read the target again.

6.7.2 Instantiation
This core is connected to the FPGA Local Bus port through its companion, the core lb_chip_io which
includes all Xilinx I/O buffers. On the left are the connections outside the FPGA, on the right the
connections to the FPGA Internal Bus.

FDK Reference Manual Page 58 of 165

LB_LHOLD

LB_LHOLDA

LB_ADS_N

LB_ADDR : (13:2)

LB_DATA : (31:0)

LB_BLAST_N

LB_BREQ

LB_EOT_N

FREADY_N

LB_READY_N

Local Bus Interface

LB_WRITE

LB_LHOLD
IB_Rdy

IB_Acqiris

IB_Addr : (31:0)

IB_Customer

IB_Dirsel

IB_IndirCtr : (31:0)

IB_DataR : (31:0)
IB_DataW : (31:0)

IOSTANDARD_G = "LVTTL" (string)

FCS_ni

FReady _no

fdk_lib
lb_chip_io
lbus_io

fdk_lib
lb_interface_m
lbus

FCS_ni

FReady _no
IB_Write

IB_Cpld

IB_IndirCtr

IB_DirSel

IB_Customer

IB_DataW

IB_Write
IB_Addr

IB_Acqiris

IB_Cpld

IB_DataR

IB_TimeO

Driv erStartAcq
Driv erStopAcq

AddA_last : (8:0)
AddB_last : (8:0)

CustIndExt : (31:0)

FREAD

LB_Addr_hz : (13:2)

LB_Addr_i : (13:2)

LB_Addr_o : (13:2)

LB_ADS_nhz

LB_ADS_ni

LB_ADS_no

LB_Blast_nhz

LB_Blast_ni

LB_Blast_no

LB_Breq_o

LB_Data_hz : (31:0)

LB_Data_i : (31:0)
LB_Data_o : (31:0)

LB_EOT_no

LB_Lhold_i
LB_Lholda_o

LB_Ready _nhz

LB_Ready _ni

LB_Ready _no

LB_Write_hz

LB_Write_i

LB_Write_o

LB_Ready _nhz

PermissionCode

FCS_N FCS_N

FREADY _N

LB_ADDR : (13:2)

LB_ADS_N

LB_BLAST_N

LB_BREQ

LB_DATA : (31:0)

LB_EOT_N

LB_LHOLDA

LB_READY _N

LB_WRITE

LB_Addr_hz : (13:2)

LB_Addr_i : (13:2)

LB_Addr_o : (13:2)

LB_ADS_nhz

LB_ADS_ni

LB_ADS_no

LB_Blast_nhz

LB_Blast_ni

LB_Blast_no

LB_Breq_o

LB_Data_hz : (31:0)

LB_Data_i : (31:0)
LB_Data_o : (31:0)

LB_EOT_no

LB_Lhold_i
LB_Lholda_o

LB_Ready _ni

LB_ready _no

LB_Write_hz

LB_Write_i

LB_Write_o

CK
XRESET_N

PermissionCode : (15:0)

lbclkg
Dreset_n

IB_Rdy

IB_Valid

Acquire

IB_End

IB_TimeO

Driver_Start
Driver_Stop

Core_Started

IB_Valid
IB_End

Xreset

6.7.3 Port Description
The table below only lists the connections to the Local Bus and to the Internal Bus.

Signal Size Type Short Description

LOCAL BUS

LB_LHOLD 1 In External device request Local Bus transfer

LB_LHOLDA 1 Out Grant to External to access the Local Bus

LB_WRITE 1 In Local Bus access direction

LB_ADS_N 1 InOut Local Bus address strobe

LB_ADDR 12 InOut Local Bus address

LB_DATA 32 InOut Local Bus data

LB_READY_N 1 InOut Local Bus ready

LB_BLAST_N 1 InOut Local Bus flag for last transfer of a burst

LB_BREQ 1 Out Local Bus request

LB_EOT_N 1 Out Abort DMA (not supported)

FCS_N 1 In FPGA Chip select from the CPLD

FREADY_N 1 Out Ready to the CPLD (is two cycles prior LB_READY_N)

FREAD 1 In Local Bus access direction from the CPLD

CK 1 In Local bus clock : 33 MHz

XRESET_N 1 In General reset active ‘0’

XRESET 1 Out General reset active ‘1’

PermissionCode 16 In Code for firmware protection, by default set to ‘0’

FPGA INTERNAL BUS

IB_Customer 1 Out Addressing destination of the current access:

FDK Reference Manual Page 59 of 165

Signal Size Type Short Description
0 = not in the User Core address space
1 = within the User Core address space

IB_Cpld 1 Out Agilent reserved usage, select CPLD addressing space

IB_Acqiris 1 Out Agilent reserved usage, select Agilent addressing space

IB_Dirsel 1 Out Addressing type of current access: 0 = indirect, 1 = direct

IB_IndirCtr 32 Out This signal defines the target for Indirect Access.

IB_IndirCtr uses the value of the register
IndirectControl when the current access is Indirect.

IB_Write 1 Out Access direction:
1 = write (data from the driver)
0 = read (data to the driver)

IB_Addr 32 Out This signal defines the start address for accesses to the
Indirect Data Port or the register number for accesses to the
Direct Access Registers.

For accesses to the Indirect Data Port , the value will be a
copy of the IndirectAddress Register.

For accesses to the Direct Access Registers, the bits 16 to 23
takes the value of the bits 0 to 7 of the register Direct Access
Block, the bits 0 and 1 will be ‘0’ and the bits 2 to 13 will
take the value of the bits 2 to 13 of the signal
LB_ADDRESS. (The bits 2 to 8 represent the Direct
Register Number).

IB_DataW 32 Out 32-bit Write Data Bus

IB_DataR 32 In 32-bit Read Data Bus

All unselected devices connected to the IB bus must drive
x”00000000” onto these lines to implement a data read
multiplexer with a simple OR function.

IB_Rdy 1 In The selected device must drive ‘0’ when the data (read) or the
device (write) is not ready or not selected.

The selected device must drive ‘1’ when the data (read) or the
device (write) is ready and selected.

All unselected devices connected to the IB bus must drive ‘0’
onto this line to implement a multiplexer with a simple OR
function.

IB_TimeO 1 Out Set ‘1’ when a device failed to acknowledge IB_Rdy within
64-clock cycle after an IB cycle has been started. The cycle
will end without retry. IB_TimeO will then come back to
‘0’.

IB_Valid 1 Out IB_Valid is ‘1’ when IB_DataW is valid. In case of burst
write, it should be used to load the data to the selected device.
For burst write access IB_Valid can be one for multiple
clock periods, denoting burst write of successive data.

IB_End 1 In If this input is ‘1’ it enables the Local Bus interface to
execute an access to the Internal Bus. It is normally driven
‘1’ except for Indirect Access. For Indirect Access, the
selected device must drive ‘0’ onto this line for the entire
time of the access. IB_End must be set to ‘1’ when the
device has completed the access and when it is ready for
another one.

ACQUISITION STATUS

Acquire 1 Out Becomes ‘1’ after the driver function AcqrsD1_acquire is

FDK Reference Manual Page 60 of 165

Signal Size Type Short Description
executed and ‘0’ after the driver function
AcqrsD1_stopAcquisition is executed.

DriverStartAcq 1 Out Becomes ‘1’ for a single clock cycle when the driver function
AcqrsD1_acquire is executed.

DriverStopAcq 1 Out Becomes ‘1’ when the driver function
AcqrsD1_stopAcquisition is executed.

6.7.4 Access Time Out
If a target does not respond IB_Rdy within 64 clock cycles, a timeout will be issued setting IB_TimeO
to ‘1’. The Local Bus interface automatically generates an acknowledge signal to the Local Bus, setting
LB_READY_N to ‘0’ until completion of the Local Bus access. Any data will be lost, both on reading and
writing. Any target should reset itself to the idle state when time out occurs.

6.7.5 Protection of Firmware Code
The core lb_interface_m contains a firmware identifier used by the driver to prevent unauthorized
use of the firmware.

If the 16 lower bits of the Permission Code Register are set to 0x0000 or 0xFFFF with the signal
PermissionCode , the driver software considers the firmware as unprotected and permits software
access to the FPGA. If another value is set (for details, see Code Protection Register in the next section),
the driver only grants access to the FPGA if the on-board EEPROM contains the corresponding code.
This mechanism permits the authorization of protected firmware usage on each AC/SC2x0 individually.
A single board can support multiple protection codes so that it can be used with a number of different
protected firmware versions.

The EEPROM must be loaded by Agilent, so developers wishing to use the protection mechanism should
contact Agilent.

6.7.6 Registers

6.7.6.1 Overview
Register Register Space Register

Address
Ac2x0_FDK Short Description

0 Cust/Reserved 0x2200 Available Indirect Access Port

1 Cust/Reserved 0x2204 Available Indirect Address Register

2 Cust/Reserved 0x2208 Available Buffer Identifier Register

4 Cust/Reserved 0x2210 Available Code for Firmware Protection

9 Cust/Reserved 0x2224 Available FPGA Direct Access Block Registers

6.7.6.2 Indirect Access Port
This register gives access to large data blocks, together with the Indirect Address Register and the Buffer
Identifier Register. As seen by the control software, it acts like a FIFO data port.

Register Space Register Number Register Address

Customer 0 0x2200

31..0

IndirData

[31..0] IndirData RW Indirect Data value. Every read or write access uses the indirect
address defined by the Indirect Address and Buffer Identifier
registers.

6.7.6.3 Indirect Address Register
Register Space Register Number Register Address

FDK Reference Manual Page 61 of 165

Customer 1 0x2204

31..0

IndirAddr

[31..0] IndirAddr RW This register defines the address for Indirect Access.

It is used when accessing the Indirect Access Port. This address is
defined in bytes and is auto incremented by 4 for each read or written
word from / to the Indirect Access Port. The signal IB_Addr will
take the value of IndirAddr when the access on the Internal Bus is
an Indirect Access.

6.7.6.4 Buffer Identifier Register
Register Space Register Number Register Address

Customer 2 0x2208

31..0

IndirCtr

[31..0] IndirCtr RW This register defines the target for Indirect Access.

The signal IB_IndirCtr takes the value of IndirCtr when the
access on the Internal Bus is an Indirect Access.

6.7.6.5 Code Protection Register
Register Space Register Number Register Address

Customer 4 0x2210

31..16 15..4 3..0

 DeveloperID FirmwareID

NOTE: A firmware permission code is a 16-bit value that is embedded within any FPGA
Firmware. This is the value of the signal PermissionCode connected to the core
lb_interface_m .

The values 0x0000 and 0xFFFF are reserved, to define unprotected firmware.

Using a different permission code value would block any FPGA register access on modules that
do not contain this value within their EEPROM. Please contact Agilent Technical support if you

want to modify the EEPROM for such protection.

[3..0] FirmwareID R 16 Firmware identifiers:

Use only the values 0x0 to 0xE. Each of these 15 values, together
with a unique value of DeveloperID , identifies a firmware. Of
course, several firmware codes may contain the same identifier if
there is no need to give them different permissions.

The AC/SC2x0 EEPROM must contain the same DeveloperID
and FirmwareID combination as the firmware. Otherwise, the
driver refuses to access the FPGA.

If the EEPROM contains the value 0xF in the FirmwareID , then
all firmware versions with the same DeveloperID are permitted,
independently of the value of FirmwareID in the firmware.

[15..4] DeveloperID R Each Developer ID lets the FDK developer define and use up to 15
Firmware IDs to protect the firmware against unauthorized use.

6.7.6.6 Direct Access Block Register
Register Space Register Number Register Address

FDK Reference Manual Page 62 of 165

Customer 9 0x2224

31..8 7..0

-- DIR_BLOCK_NBR

[7..0] DIR_BLOCK_NBR RW This register defines the IB-BUS register block for subsequent
accesses to the Direct Access Registers.

The bit signal IB_Addr takes the value of IndirCtr when the
access on the Internal Bus is an Indirect Access.

6.7.7 Constraints
• Clock Constraint

This core assumes a CLK frequency of 33 MHz. This constraint must be defined for the clock manager
component and is automatically propagated throughout the whole design.

• Input Signal Constraints

Pad to register delay must not exceed 10 ns. For more details, please read the .sdc or .ucf constraint files
of the BaseDesign.

• Output Signal Constraints

All output signals are registered. All output registers should be located within the IOB. All are of type
LVTTL, slow, 12 mA.

Clock to output delay must not exceed 10 ns. For more details, please read the .sdc or .ucf constraint files
of the BaseDesign.

6.7.8 Resource Utilization
Resource count and relative usage in the target Xilinx Virtex II Pro – XC2VP70-6FF1517:

Resources Used Available Utilization
Block RAMs 1 328 0.3%

Function Generators 529 66176 0.8%

CLB Slices 369 33088 1.1%

Dffs or Latches 737 69068 1.1%

6.7.9 Version History

Date Version Comments
April 05 Beta 1 Initial Version

May 06 Beta 7 Description updated

FDK Reference Manual Page 63 of 165

6.8 DE Interface for 1 and 2 Channels
The cores de_interface_1ch and de_interface_2ch are the FPGA interfaces handling the
digitized data input streams for the AC210 and the AC240.

6.8.1 Functional Description
After the ADC conversion, the samples from each channel are de-multiplexed to the DE-Bus. Each DE-
Bus is 16 samples wide, transmitting 16 samples every 16 ns when running at the maximum sample rate,
1 GS/s/channel.

When the AC240 is configured to run as a single channel at 2 GS/s, the input signal Ch1 or Ch2 is sent to
both ADCs. Each ADC drives the DE-Bus in an identical manner as in the two-channel configuration.

Once the acquisition is started, a continuous stream of data flows to the FPGA, along with the DE-Bus
clocks DECLKA and DECLKB. Both are equal to the ADC clock, divided by 16.

The core has a built-in Buffer, the DE-Buffer, which has two ports and behaves like a FIFO. The data are
clocked at the input on the falling edge of DECLKA, respectively DECLKB, and are read out with the
clock StreamCK. StreamCK can be completely asynchronous to the input clock. Of course, StreamCK
cannot be slower than DECLKx. When the frequency of StreamCK is greater than the frequency of the
DECLKx clock, the data valid signals SP_Data_Val_A and SP_Data_Val_B are set ‘1’ when there
is valid data on the data output SP_Data_A and SP_Data_B .

StreamCK is usually connected to the system clock Sysclk , defined in the base designs.

The DE-Buffer also handles the trigger status signal which can be used to determine the position of a
trigger with the resolution of one sample or one data block of 16 samples, depending on the trigger core.

The DE-Buffer can be read or written through the Local Bus. Its contents can be frozen (by preventing the
incoming data stream from overwriting the buffer) and continuously repeated on the output stream port.
This might be useful for verifying the operation of the firmware with exactly known data (acquired data
always contains a small amount of noise). DE-Buffer is 8 KB per channel.

6.8.2 Instantiation
The core de_interface_2ch is connected to two DE-Bus instances through its companion
de_chip_io that includes all Xilinx I/O buffers for one bus. On the left are the connections outside the
FPGA, on the right the connections to the FPGA internal cores.

Instantiation of the core de_interface_1ch is identical, except that the component DE_Buffer_io_B
is not instantiated.

FDK Reference Manual Page 64 of 165

de_interface
ac240_fdk/ac240_top_sysclk/struct

MDB : (63:0)
MEB : (63:0)

MDA : (63:0)
MEA : (63:0)

Acqiris

fdk_lib
de_interface_2ch

SP_Data_A : (127:0)

SP_Data_B : (127:0)

SP_Data_Val_B

SP_Data_Val_A

SP_Data_Addr : (8:0)

T rig_Enb_Acq

Output Stream

IB_Customer
IB_DirSelIB_DirSel

MEB_i : (63:0)
MDB_i : (63:0)

MEA_i : (63:0)
MDA_i : (63:0)

fdk_lib
de_chip_io
DE_Buffer_io_A

MD : (63:0) MD_i : (63:0)
ME : (63:0) ME_i : (63:0)

fdk_lib
de_chip_io
DE_Buffer_io_B

MD : (63:0) MD_i : (63:0)
ME : (63:0) ME_i : (63:0)

I6
MDA : (63:0)

MDB : (63:0)

MEA : (63:0)

MEB : (63:0)
declkbg

Formated_T racpt

StopFi l l

declkag

Tracpt

DeStopped

BigEndian

Loc_Tracpt : (3:0)

Local Bus (LB)

Input Stream

IB_Customer

logic0

Tracpt

DeStopped

BigEndian

declk

Loc_Tracpt : (3:0)

IB_DataR : (31:0)

IB_Rdy

IB_Addr : (31:0)
IB_DataW : (31:0)

IB_IndirCtr : (31:0)

IB_T imeO

IB_Valid
IB_Wri te

IB_Clk
Reset

IB_End

IB_Addr : (31:0)
IB_DataW : (31:0)

Dreset

IB_Write

lbclkg

IB_Rdy8

IB_DataR8 : (31:0)

IB_Valid

IB_TimeO

IB_IndirCtr : (31:0)
IB_End_DE

SP_First_A

SP_Trigger

StreamCK

DE_Start

StartStore

Sysclk

Declk_locked

6.8.3 Port Description

Signal Size Type Short Description

INTERNAL BUS

IB_Customer
IB_Dirsel
IB_Write
IB_Valid
IB_Rdy
IB_TimeO
IB_End
IB_IndirCtr
IB_Addr
IB_DataW
IB_DataR

1
1
1
1
1
1
1
32
12
32
32

In
In
In
In
Out
In
Out
In
In
In
Out

Should be connected to the IB-BUS signal with the same
name. For details please refer to the description of the
IB-BUS.

IB_Clk 1 In Internal Bus Clock
It must be connected to lbclkg , the Local Bus clock.

Reset 1 In Reset
It must be connected to the general reset Dreset .

DE BUS – Data input Stream

MDA 64 In Data input streamA, samples 0 to 7 of the incoming data
block (gray coded)

MEA 64 In Data input streamA, samples 8 to 15 of the incoming
data block (gray coded)

declkag 1 In Data input streamA clock. MDA and MEA are clocked by
the falling edge of the clock.

MDB 64 In AC240 only. Data input streamB, samples 0 to 7 of the
incoming data block (gray coded)

MEB 64 In AC240 only. Data input streamB, samples 8 to 15 of the
incoming data block (gray coded)

DECLKBG 1 In AC240 only. Data input streamB clock. MDB and MEB
are clocked by the falling edge of the clock.

Formated_tracpt 1 In After the trigger has been enabled (see details in the
description of the core trigger_manager), indicates
that a trigger occurred in the current data block.

FDK Reference Manual Page 65 of 165

Signal Size Type Short Description
Formated_tracpt remains ‘1’ for a single declk
period. It must be connected to the equivalent signal out
of the core trigger_manager .

Loc_tracpt 4 In Location of the trigger within the block of 16 samples.
This is available only if the trigger core
trigger_manager_1ns is used. It must be
connected to the equivalent signal out of the trigger core.

Tracpt 1 In Raw accepted trigger signal. It must be connected to the
equivalent signal out of the trigger core.

BigEndian 1 In Select format for FIFO readout to the application:
‘0’: Little Endian
‘1’: BigEndian

StopFill 1 In Function not available, reserved for future use. It must be
connected to ‘0’.

DeStopped 1 Out A ‘1’ denotes the de_interface is actually stopped.
It is ‘0’ when running.

OUTPUT STREAM

SP_First_A 4 Out 4-bit trigger position in the data block. Only valid if the
core trigger_manager_1ns is used.

SP_Trigger 1 Out ‘1’ indicates a trigger occurred in the current data block.

SP_Data_A 128 Out FIFO output 128 bits, 16 x 8-bit samples from DE-Bus A

SP_Data_Val_A 1 Out Data valid at FIFO output, channel A

SP_Data_B 128 Out AC240 only. FIFO output 128 bits, 16 x 8-bit samples
from DE-Bus B

SP_Data_Val_B 1 Out AC240 only. Data valid at FIFO output, channel B. It is
strictly identical to SP_Data_Val_A .

Sp_Data_Addr 9 Out 9 bits, unused, reserved for Agilent.

StartStore 1 In Starts the de_interface FIFO and output stream. This
should be done only after the continuous acquisition
mode setup is complete. See the dedicated paragraph
below.

DE_Start 1 Out Bit DeStart of the DEControl register. It must be
connected to the input StartStore , either directly or
delayed by the DCM locking time in case the firmware
uses the core ck_manager_sysclk_declk .

Trig_Enb_Acq 1 Out It must be connected to the corresponding input of the
core trigger_manager .

StreamCK 1 In Output Stream Clock. Can be any frequency equal or
greater than 62.5 MHz (maximum frequency of the
clocks DECLKx) .

6.8.4 Output Stream Bus
The two data streams are fully coherent. The two signals SP_Data_Val_A and SP_Data_Val_B are
always ‘1’ simultaneously and ‘0’ simultaneously.

FDK Reference Manual Page 66 of 165

For the AC240 dual channel mode (non-interleaved), SP_Data_A corresponds to the front-panel signal
connector “INPUT2” while SP_Data_B corresponds to the front-panel signal connector “INPUT1”.

For the AC210, SP_Data_A corresponds to the front-panel signal connector “INPUT”.

The most significant bits (120 to 127) correspond to the first (oldest) acquired sample, and the lowest bits
(0 to 7) correspond to the last acquired sample. Each value can be raw or signed, selectable with the bit
Unsigned of the de_control register.

In the case of interleaved acquisition (AC240 in single channel mode), SP_Data_A and SP_Data_B
are interleaved. All even samples (samples 0, 2, 4, 6 …30 of a 32-sample data block) are on SP_Data_A
and all odd samples (samples 1, 3, 5, 7 …31) are on the bus SP_Data_B . The sample 0 is the oldest, i.e.
the first acquired sample.

6.8.4.1 Data Source and Ordering
Module Mode & Source Sample

oldest = 0

AC240 Dual channel
Source is input1

0 to 15 S(i) = SP_Data_B(127-(i*8) to 120-(i*8))

AC240 Dual channel
Source is input2

0 to 15 S(i) = SP_Data_A(127-(i*8) to 120-(i*8))

AC240 Single channel

Source is input1
and input2

0 to 30, step 2

1 to 31, step 2

S(i) = SP_Data_A(127-(i*4) to 120-(i*4))

S(i) = SP_Data_B(127-((i-1)*4) to 120-((i-1)*4))

AC210 Single channel
Source is input1

0 to 15 S(i) = SP_Data_A(127-(i*8) to 120-(i*8))

6.8.4.2 ADC Code Correspondence
Position Raw Signed
ADC top 0xFF 0x7F Overflow, >= +Full Scale / 2 @ Offset = 0 V

ADC middle 0x80 0x00 Corresponds to 0V @ Offset = 0 V

ADC bottom 0x00 0x80 Underflo, <= -Full Scale / 2 @ Offset = 0 V

6.8.5 Registers

6.8.5.1 DEControl Register
Register Space Register Number Register Address

Customer 8 0x2220

31 30..24

DeStart --

23 22 21 20 19..18 17 16

FDK Reference Manual Page 67 of 165

-- Replay StopFillOnTr DisableFill DeRWMode Gray2BinOff Unsigned

15..0

DeAddress

[15..0] DeAddress R Indicate the trigger position or the automatic generated
trigger position for the Base Design test mode. This address
can be used as start address for reading the DE-Buffer. The
value must be written to the Indirect Address Register prior
to reading the DE-Buffer.

The value is valid for CHA, CHB or interleaved readout.
The value must be multiplied by two in case of interleaved
mode.

[16] Unsigned RW Select Unsigned / Signed format for SP_Data_A &
SP_Data_B

 0 Signed

 1 Unsigned

[17] Gray2BinOff RW Disable Gray to binary conversion for SP_Data_A &
SP_Data_B . Binary to gray should be disabled if you
write data to the DE-Buffer with the intention of replaying
the data.

 0

SP_Data_A and SP_Data_B take on the values of the
DE-Buffer with conversion from Gray code to binary.
This is necessary for the ADC data stream that is coded
in Gray.

 1 SP_Data_A and SP_Data_B take on the values of the
DE-Buffer without conversion from Gray to binary.

[19..18] DeRWMode RW Configure DE-Buffer for read and write operation

 0
0

Channel A

 0
1

Channel B (AC240 only)

 1
0

Channel A and B Interleaved (A0, B0, A1, B1…).

 1
1

Undefined

[20] DisableFill RW Stop writing the incoming data to the DE-Buffer. Should be
set to ‘0’ in normal operation mode or ‘1 when replaying of
the DE-Buffer is required.

[21] StopFillOnTr RW Special Test mode when set to ‘1’:

Input data are continuously stored to the DE-Buffer. The
controller waits for a valid trigger. When a trigger occurs,
the input data continue to be stored until the DE-Buffer is
Full.

[22] Replay RW Special Test mode when set ‘1’:

The contents of the DE_Buffer are frozen and will be
continuously replayed to SP_Data_A & SP_Data_B .
The stream should be started. Replay uses the declk rate to
output the stream.

[24] Sp_Trig_Reorder RW The state of the register bit Sp_Trig_Reorder is
transferred to the ouput Sp_Trig_Reorder of the core (this is
true only for the core de_interface_2ch _rg
described in the next section)

[31] DeStart When set to ‘1’, enables the data stream from the DE-
Buffers to SP_Data_A and SP_Data_B .

FDK Reference Manual Page 68 of 165

6.8.5.2 DE_Buffer Operating Mode
Use only the first mode (00) for normal operation!

DisableFill StopFillOnTr Operation

0 0 The trigger is controlled by the user core.

The DE-Buffer streams data continuously. The IN-Buffer can be set to
Triggered or non-Triggered mode.

1 0 BaseDesign Test mode: Untriggered operation

When DisableFill is set ‘1’, the core de_interface generates a
trigger on SP_Trigger at the current DE-Buffer location and stops filling
the DE-Buffer just before reaching again the same location, so the buffer
is completely filled with new data.

The output stream will continuously repeat the DE-Buffer contents with
a trigger at the beginning of the waveform.

The DE-Buffer has to be read from the position DeAddress.

Filling will start again when DisableFill is set ‘0’.

1 1 BaseDesign Test mode: Triggered operation.

The only difference with the mode 10 is the trigger. It is not
automatically generated by the core de_interface but is a true
trigger, derived from the input Formatted_Tracpt .

6.8.6 Accessing the DE-Buffer
The DE-Buffer contents can be read in burst mode using the Indirect Addressing Register. The DE-Buffer
contains 8K samples per channel. The Indirect Address Register and the Buffer Identifier Register should
be set prior to reading or writing the DE-Buffer.

6.8.6.1 DE-Buffer
Register Space Register Number Register Address Buffer Identifier

Customer 0 0x2200 0x08

31..24 23..16 15..8 7..0

D3 D2 D1 D0

[31..0] D3 - D0 RW The bytes D0- D3 each correspond to an 8-bit sample.

The format is signed or unsigned as defined by the DEControl
register.

The order, big or little Endian, is configured in the Agilent general
control register (see the core acq_ctr_reg).

6.8.7 Constraints
• Clock Constraint

This core assumes an IB_Clk frequency of 33 MHz. This constraint must be defined for the clock
manager component and is automatically propagated throughout the whole design.

• declkag and declkbg Clock Constraint

The maximum frequency of DECLKA and DECLKB is 62.5 MHz, for a sample rate of 1 GS/s (non-
interleaved), or 2 GS/s when the 2 channels of an AC240 are interleaved. This constraint must be defined
for the clock manager component and is automatically propagated throughout the whole design.

• Input Signal Constraints

All FPGA inputs are registered. All input registers must be located within the IOB.

FDK Reference Manual Page 69 of 165

6.8.8 Resource Utilization
De_interface_1ch:
Resource count and relative usage in the target Xilinx Virtex II Pro – XC2VP70-6FF1517:

Resources Used Available Utilization
Block RAMs 6 328 1.8%

Function Generators 1059 66176 1.6%

CLB Slices 611 33088 1.9%

Dffs or Latches 1222 69068 1.8%

De_interface_2ch:
 Resource count and relative usage in the target Xilinx Virtex II Pro – XC2VP70-6FF1517:

Resources Used Available Utilization
Block RAMs 10 328 3.0%

Function Generators 1754 66176 2.7%

CLB Slices 899 33088 2.7%

Dffs or Latches 1798 69068 2.6%

6.8.9 Version History

Date FDK Version Comments
April 05 Beta 1 Initial Version

June 05 Beta 2 Implemented write function to the DE-Buffer

July 05 Beta 3 Add Replay bit, make replay work

September 05 Beta 4 Make the IB-BUS access work with any frequency of StreamCK.

March 06 Beta7 Description updated.

FDK Reference Manual Page 70 of 165

6.9 DE Interface for SC240 and High Resolution Trigger
The core de_interface_2ch_rg is identical to the core de_interface_2ch except for the DE
input clocking scheme that uses only the clock declkbg instead of the two clocks declkbg and
declkag . This was necessary to be able to place and route all the clocks used for the streamer and the
high resolution trigger.

Please read the previous section for a complete description. This section only contains the essentials.

NOTE: Because DCM are used for generation of all clocks DeclkX , this core should be used only for
ADC sampling rate of 500 MS/s and 1 GS/s (in interleaved mode, this is equal to a sampling
rate of 1 GS/s and 2 GS/s). For lower sampling rates, the DCM will unlock and the behavior
will not be guaranteed. Lower sampling rate can be implemented by sparsing the data within
the firmware.

6.9.1 Instantiation
The core de_interface_2ch_rg shall be used for streamer applications if the
trigger_manager_1ns core is instantiated for the trigger.

6.9.2 Port Description

Signal Size Type Short Description

INTERNAL BUS

IB_Customer
IB_Dirsel
IB_Write
IB_Valid
IB_Rdy
IB_TimeO
IB_End
IB_IndirCtr
IB_Addr
IB_DataW
IB_DataR

1
1
1
1
1
1
1
32
12
32
32

In
In
In
In
Out
In
Out
In
In
In
Out

Should be connected to the IB-BUS signal with the same
name. For details please refer to the description of the
IB-BUS.

IB_Clk 1 In Internal Bus Clock
It must be connected to lbclkg , the Local Bus clock.

Reset 1 In Reset
It must be connected to the general reset Dreset.

DE BUS – Data input Stream

MDA 64 In Data input streamA, samples 0 to 7 of the incoming data
block (gray coded)

MEA 64 In Data input streamA, samples 8 to 15 of the incoming
data block (gray coded)

MDB 64 In SC240 only. Data input streamB, samples 0 to 7 of the
incoming data block (gray coded)

MEB 64 In SC240 only. Data input streamB, samples 8 to 15 of the
incoming data block (gray coded)

declkbg 1 In SC240 only. Data input streamB clock. MDB and MEB are
clocked by the falling edge of the clock.

Formated_tracpt 1 In After the trigger has been enabled (see details in the
description of the core trigger_manager_1ns),
indicates that a trigger occurred in the current data block.
Formated_tracpt remains ‘1’ for a single declk
period. It must be connected to the equivalent signal out
of the core trigger_manager_1ns .

Loc_tracpt 4 In Location of the trigger within the block of 16 samples.
This is available only if the trigger core

FDK Reference Manual Page 71 of 165

Signal Size Type Short Description
trigger_manager_1ns is used. It must be
connected to the equivalent signal out of the trigger core.

Tracpt 1 In Raw accepted trigger signal. It must be connected to the
equivalent signal out of the trigger core.

BigEndian 1 In Select format for FIFO readout to the application:
‘0’: Little Endian
‘1’: BigEndian

StopFill 1 In Function not available, reserved for future use. It must be
connected to ‘0’.

DeStopped 1 Out A ‘1’ denotes the de_interface is actually stopped.
‘0’ when running.

OUTPUT STREAM

SP_First_A 4 Out 4-bit trigger position in the data block. Only valid if the
core trigger_manager_1ns is used.

SP_Trigger 1 Out ‘1’ indicates a trigger occurred in the current data block.

SP_Data_A 128 Out FIFO output 128 bits, 16 x 8-bit samples from DE-Bus A

SP_Data_Val_A 1 Out Data valid at FIFO output, channel A

SP_Data_B 128 Out SC240 only. FIFO output 128 bits, 16 x 8-bit samples
from DE-Bus B

SP_Data_Val_B 1 Out SC240 only. Data valid at FIFO output for channel B. It
is strictly identical to SP_Data_Val_A .

Sp_Data_Addr 9 Out 9 bits, unused, reserved for Agilent.

Sp_Trig_Reorder 1 Out Trigger Reorder control. Takes the value of the bit
Sp_Trig_Reorder of the register DEControl
Register described in the previous section.

StartStore 1 In Starts the de_interface FIFO and output stream. This
should be done only after the continuous acquisition
mode setup is complete. See the dedicated paragraph
below.

DE_Start 1 Out Bit DE_Start of the DE_control register. It must be
connected to the input StartStore , either directly or
delayed by the DCM locking time in case the firmware
uses the core ck_manager_sysclk_declk .

Trig_Enb_Acq 1 Out It must be connected to the corresponding input of the
core trigger_manager_1ns .

StreamCK 1 In Output Stream Clock. Can be any frequency equal or
greater than 62.5 MHz (maximum frequency of the
clocks DECLKx) .

6.9.3 Version History

Date FDK Version Comments
January 07 1.0 New core for the streamer Base Design

FDK Reference Manual Page 72 of 165

6.10 Trigger Manager
The core trigger_manager generates a trigger derived from the trigger system on the module. The
trigger can be one of these possible trigger sources: Ch1, Ch2, or External Trigger In.

6.10.1 Functional Description
The core trigger_manager controls if the trigger is enabled or not. It also formats the accepted
trigger signal and forwards it to the de_interface . This is because the trigger signal has to be routed
consistently through the DE_Buffer in order to keep the simultaneity between the incoming sample and
the trigger signal.

The trigger does not necessarily have to be used. It only generates a marker in the data stream. It does not
directly affect the data stream which remains continuous.

There are two differential trigger input signals: TRIG_p / TRIG_n and TRIGA_p / TRIGA_n. TRIG
directly reflects the output of the trigger comparator, while TRIGA represents the ‘accepted’ trigger.
TRIGA remains low as long as TRIGEN remains ‘0’, i.e. the trigger accept circuit has not been enabled.
Setting TRIGEN to ‘1’ enables the trigger accept circuit. After enabling, the signal TRIGA becomes ‘1’ at
the first occurrence of a trigger. TRIGA then remains ‘1’ and goes low only after TRIGEN is reset to ‘0’.

The core trigger_manager has the two trigger enable inputs Trig_Enb_Acq , Trig_Enb_Usr .
The signal Trig_Enb_Sel selects which of the input trigger enables drives the trigger enable output
TRIGEN.

6.10.2 Port Description

Signal Size Type Short Description
Reset 1 In Reset, active ‘1’.

declk 1 In Clock input. It is used to synchronize the signal
Formatted_Tracpt .

TRIG_p / _n 2 In Differential Raw trigger input, reflects the output of the
trigger comparator.

TRIGA_p / _n 2 In Accepted trigger. Trigger signal “gated” by the trigger
enable signals (see below).

Trig_Enb_Sel 1 In Select TRIGEN signal source:
’0’: Trig_Enb_Usr
’1’: Trig_Enb_Acq

Trig_Enb_Acq 1 In Trigger Enable input reserved for Agilent

Trig_Enb_Usr 1 In Trigger Enable input reserved for the developer

TRIGEN 1 Out Trigger Enable to the trigger circuitry.

Trigger 1 Out Raw trigger output

FDK Reference Manual Page 73 of 165

Signal Size Type Short Description
Tracpt 1 Out Accepted trigger

Loc_Tracpt 4 Out Always 0x0000. It is the trigger position within the data
block of 16 samples. Not used in this core.

Formatted_Tracpt 1 Out Single pulse of width equal to one declk period, derived
from the rising edge of Tracpt .

6.10.3 Trigger and Trigger Accept Circuit
The diagram below shows the trigger and accepted trigger as implemented on the module (outside the
FPGA). This circuit is implemented with high speed logic in order to reduce the meta-stability of the
accepted trigger.

6.10.4 Trigger Control Timing Diagram

6.10.5 Constraints
• declk Clock Constraint

This core assumes a declk frequency of maximum 62.5 MHz. This constraint must be defined for the
clock manager component and is automatically propagated throughout the whole design.

• Input Signal Constraints

Timing for TRIG and TRIGA need not be constrained, but there is a location constraint due to the clock
distribution. Thus the IOB of the TRIGA buffer can not be used with the declkag clock; otherwise the
Place & Route path fails. The first register location is constrained to be in the nearest quarter where
declkag is routed. Please refer to the *.sdc file for more details about the LOC constraints associated
with the TRIGA input.

• Output Signal Constraints

TRIGEN output delay need not be constrained. The default LVTTL 12mA slow output driver is fine.

6.10.6 Resource Utilization
Resource count and relative usage in the target Xilinx Virtex II Pro – XC2VP70-6FF1517:

Resources Used Available Utilization

FDK Reference Manual Page 74 of 165

Resources Used Available Utilization
Function Generators 2 66176 ~0%

CLB Slices 2 33088 ~0%

Dffs or Latches 4 69068 ~0%

6.10.7 Version History

Date FDK Version Comments
April 05 Beta 1 Initial Version

September 05 Beta 4 Compared to the data input stream, the trigger has been delayed
by one clock period in order to fit the reality.

March 06 Beta 7 Description updated.

FDK Reference Manual Page 75 of 165

6.11 High Resolution Trigger Manager
The core trigger_manager_1ns generates a trigger derived from the trigger system on the module.
The trigger can be one of these possible trigger sources: Ch1, Ch2 or External Trigger In. It is comparable
to the core trigger_manager but with an improved resolution.

The core trigger_manager_1ns has two operating modes. The first mode replicates the function of
the core trigger_manager . Please read the previous section for details about this mode. The second
mode has an enhanced resolution in order to achieve a trigger resolution of one sample (inputs non-
interleaved) or two samples (inputs interleaved).

6.11.1 Functional Description
The core trigger_manager_1ns controls if the trigger is enabled or not. It also formats the accepted
trigger signal and forwards it to the de_interface . This is because the trigger signal has to be routed
consistently through the DE_Buffer in order to keep the simultaneity between the incoming sample and
the trigger signal.

The trigger does not necessarily have to be used. It only generates a marker along the data stream. It does
not directly affect the data stream which remains continuous.

The two bits TRM of the Trigger Control Register control the trigger mode. There are four modes. The
first mode (TRM set to ‘00’) replicates the function of the core trigger_manager . The enhanced
resolution mode is enabled when TRM is set to ‘01’. The two additional modes are reserved for Agilent
verification purpose.

The core trigger_manager has the two trigger enable inputs Trig_Enb_Acq , Trig_Enb_Usr .
The signal Trig_Enb_Sel selects which of the input trigger enables drives the trigger enable output
TRIGEN.

There are two differential trigger input signals: TRIG_p / TRIG_n and TRIGA_p / TRIGA_n. TRIG
directly reflects the output of the trigger comparator, while TRIGA represents the ‘accepted’ trigger.
TRIGA remains low as long as TRIGEN remains ‘0’, i.e. the trigger accept circuit has not been enabled.
Setting TRIGEN to ‘1’ enables the trigger accept circuit. After enabling, the signal TRIGA becomes ‘1’ at
the first occurrence of a trigger. TRIGA then remains ‘1’ and goes low only after TRIGEN is reset to ‘0’.

After TRIGA rises to ‘1’, the output signal Formatted_Tracpt will rise to ‘1’ and remains ‘1’ for one
declk period. The signal Loc_Tracpt will indicate the sample (in the bloc: 0 to 15) at which the
trigger occurred.

The core delivers a timestamp with a resolution equal to the resolution of the trigger. The value is updated
when TRIGA rises to ‘1’.

The signals Formatted_Tracpt_dly and Loc_Tracpt_dly are the signals
Formatted_Tracpt and Loc_Tracpt digitally delayed by a programmable value (TRDL of the
register TriggerDelay) with a resolution equal to one sample. This is useful for adjusting the position
of the trigger relative to the data.

The Status of the core can be interogated in a program by reading the status registers Trigger Status
Lo and Trigger Status Hi .

6.11.2 Port Description

Signal Size Type Short Description
Trigger Control IO

declk 1 In Clock input. It is used to synchronize the signal
Formatted_Tracpt .

TRIG_p / _n 2 In Differential Raw trigger input, reflects the output of
the trigger comparator.

TRIGA_p / _n 2 In Accepted trigger. Trigger signal “gated” by the
TRIGEN signal (see below).

Trig_Enb_Sel 1 In Select TRIGEN signal source:
’0’: Trig_Enb_Usr
’1’: Trig_Enb_Acq

FDK Reference Manual Page 76 of 165

Signal Size Type Short Description
Trig_Enb_Acq 1 In Trigger Enable input reserved for Agilent

Trig_Enb_Usr 1 In Trigger Enable input reserved for the developer

TRIGEN 1 Out Trigger Enable to the trigger circuitry.

Trigger 1 Out Raw trigger output

Tracpt 1 Out Accepted trigger

Loc_Tracpt 4 Out Trigger position within the data block of 16 samples
(fixed to ‘0000’ for the low resolution trigger mode).

Formatted_Tracpt 1 Out Single pulse of width equal to one declk period,
derived from the rising edge of Tracpt .

Loc_Tracpt_dly 4 Out Loc_Tracpt_dly takes the value:

 Loc_Tracpt + TRDL modulo 16.

Loc_Tracpt_dly is delayed in time as
Formatted_Tracpt_dly is delayed.

Formatted_Tracpt_dly 1 Out Formatted_Tracpt_dly delayed by N declk
periods. Where N is equal to the truncated integer part
of:

 (TRDL + Loc_Tracpt) / 16

INTERNAL BUS

IB_Select
IB_Dirsel
IB_Write
IB_Rdy
IB_TimeO
IB_Addr
IB_DataW
IB_DataR
IB_Clk

1
1
1
1
1
12
32
32
1

In
In
In
Out
In
In
In
Out
In

Should be connected to corresponding signal on the
IB-BUS. For details please refer to the description of
the IB-BUS.

Reset 1 In Reset, active ‘1’.

6.11.3 Registers

6.11.3.1 Trigger Control Register

NOTE Users are only allowed to control the bit TRDI to reset the DCM (in order to get them locked),
the bits TRM to set the trigger mode and the bit TRTC to reset the timestamp. All other bits
shall remain ‘0’.

Register Space Register Number Register Address

Customer 12 0x2230

31 30..25 24

TRPM TRPH TRPE

23..19 18..8 7 3 2 0..1

-- SDEL ESDS TRTC TRDI TRM

[1..0] TRM RW Trigger Mode

 00 Low resolution trigger. The resolution is 16 samples when the
channels are not interleaved or 32 samples in case of the SC240
in interleaved channel mode.

 01 High resolution trigger. . The resolution is 1 sample when the
channels are not interleaved or 2 samples in case of the SC240
in interleaved channel mode.

FDK Reference Manual Page 77 of 165

The high resolution trigger is valid only for a sampling rate of 1
GS/s.

 10 Automatic Asynchronous Trigger based on the local bus clock.
For test purpose.

 11 Synchronous Trigger for test purpose. Needs the external clock
and trigger generator.

[2] TRDI RW Initialisation of the DCM

[3] TRTC RW Enable the Restart the Timestamp Trigger counter to 0

[7] ESDS RW Enable Shift out the synchronous delay

[18..8] SDEL RW Delay for synchronous trigger test. Needs the external board for clock and
trigger generation.

[24] TRPE RW Enable Trigger fine phase correction:

 0

1

Phase correction disabled

Phase correction enabled

[30..25] TRPH RW Initial phase value: unsigned 0 to 64

[31] TRPM RW Phase increment / decrement

 0

1

Decrement phase relative by TRPH

Increment phase relative by TRPH

6.11.3.2 Trigger Status Lo

This register is used to retrieve the trigger status and the lower part of the trigger timestamp value
Register Space Register Number Register Address

Customer 13 0x2234

31..8 7..4

TSTL --

3 2 2 1

PDN GRN PDN TRO

[0] TRO R Trigger Occurred

 0

1

No Trigger

A trigger has occurred

[1] PDN R Set ‘1’ at the end of the DCM calibration phase

[2] GRN R ‘1’ indicates the gray value of the trigger interpolator was not valid

[3] LCK R ‘1’ denotes the trigger DCMs are locked

[31..8] TSTL R Bit 23 to 0 of the Trigger Timestamp.
The value is Valid if GRN is ‘0’ and TRO is ‘1’

6.11.3.3 Trigger Status Hi

This register is used to retrieve the upper part of the trigger Timestamp value.
Register Space Register Number Register Address

Customer 14 0x2238

31..0

TSTH

[31..0] TSTH R Bit 55 to 24 of the Trigger Timestamp.
This value is Valid if GRN is ‘0’ and TRO is ‘1’.

FDK Reference Manual Page 78 of 165

6.11.3.4 Trigger Delay

This register could be used to delay the trigger event relative to the data. The resolution is one sample
when the module operates in dual channel mode or two samples when the two channels are interlaced to
double the sample rate.

Register Space Register Number Register Address

Customer 15 0x223C

31..8 6..0

 TRDL

[6..0] TRDL RW Trigger Compensation. The Trigger event is shifted forward, relative to the
data stream, by a number of samples equal to the value of TRDL.

The valid range is 0 to 127.

6.11.4 Constraints
• declk Clock Constraint

This core assumes a declk frequency of minimum 31.25 MHz and maximum 62.5 MHz. This constraint
must be defined for the clock manager component and is automatically propagated throughout the whole
design.

• Input Signal Constraints

In order to ensure the same delay of the TRIGA input across successives implementations, a location
constraint is applied to the registers TraQ1 through TraQ4.

There are other crucial placement constraints to insure the resolution and linearity of the trigger
positioning.

Please refer to the *.sdc file for more details about the LOC constraints associated with this core.

• Output Signal Constraints

TRIGEN output delay need not be constrained. The default LVTTL 12mA slow output driver is fine.

6.11.5 Resource Utilization
Resource count and relative usage in the target Xilinx Virtex II Pro – XC2VP70-6FF1517:

Resources Used Available Utilization
Global Buffers (BUFG) 1 16 6.25 %

Function Generators 300 66176 0.45%

CLB Slices 216 33088 0.65%

Dffs or Latches 431 69068 0.62%

6.11.6 Version History

Date FDK Version Comments
January 07 1.0 New core for the streamer Base Design

FDK Reference Manual Page 79 of 165

6.12 Acqiris Register

6.12.1 Functional Description
The core acq_ctr_reg implements a control register and a status register that must be preserved in all
designs.

The Control register is used to control the clocking schemes, to define the data format during the readout
and to enable the use of the processing interrupt.

The Status register contains the status of clocks (DCM locked), the status of the trigger enable line, the
status of the temperature alarm, and the status of the user core (Core_started).

Since this core is primarily intended for controlling the clocking resources, the user should refer to the
description of the clock manager cores for more details about the clocking scheme.

6.12.2 Port Description

Signal Size Type Short Description

INTERNAL BUS

IB_Acqiris
IB_Customer
IB_Dirsel
IB_Write
IB_Rdy
IB_TimeO
IB_Addr
IB_DataW
IB_DataR

1
1
1
1
1
1
12
32
32

In
In
In
In
Out
In
In
In
Out

Must be connected to the IB-BUS signal with the same
name. For details please refer to the description of the IB-
BUS.

IB_Clk 1 In Internal Bus clock, must be connected to the Local Bus
clock lbclkg

Reset 1 In Reset, must be connected to the general reset Dreset

Control - Out

INTERRUPT_ENABL
E

1 Out Enable Interrupt to Local Bus

Trig_Enb_Sel 1 Out Select trigger Enable source. It must be connected to the
equivalent input of the core trigger_manager .

Enb_DCM 8 Out 8-bits DCM Enable bus. It must be connected to the
Enb_DCM input of the clock manager instance.

Sel_Fsysclk 1 Out Sysclk clock mux selection. It must be connected to the
Sel_Fsysclk input of ck_rst_manager_sysclk .

SGReset_n 1 Out Software General reset. Active after configuration. It must
be set to ‘1’ for de-activation.

Status - In

TRIGGER_ENABLE 1 In Status of the trigger enable signal for output from the user
core. It must be connected to the equivalent output of the
user core. Otherwise should be kept at ‘0’.

Core Started 1 In Status of the acquisition. Normally connected to the
output acquire of the user core.

Lck_DCM 8 In Status of each DCM (lock line). It must be connected to
Lck_DCM output of the clock manager instance.

Tmp_Alarm 1 In Status of the Temperature Alarm. It must be connected to
the corresponding output of the core acq_tmp_struct .

FDK Reference Manual Page 80 of 165

6.12.3 Registers

6.12.3.1 AcqirisPrivateControl Register
This register is located in the Agilent Space. There is no driver function available for developers to access
this register.

Register Space Register Number Register Address

Agilent 64 0x2100

31..1 0

-- SGReset_n

[0] SGRseset_n RW Software General reset. Active low. Default value = ‘0’. It
is de-asserted by the driver after new bit files are load to
the FPGA. This bit is forwarded to the output
SGReset_n .

6.12.3.2 AcqirisControl Register
Register Space Register Number Register Address

Customer 3 0x220C

31 30..28 27..25 24 23..16

SGReset_n Sel_Fsysclk End_Dcm

15..9 8 7..4 3..2 1 0

 BigEndian TrigEnSel IntEn

[0] IntEn RW Bit forwarded to the output Interrupt_Enable . There
is more detail on how to manage interrupts in the chapter
about the base designs. It must be set to ‘1’ to enable the
interrupt.

[1] TrigEnSel RW Source selection for trigger enable. It is forwarded to the
output Trig_Enb_Sel .

 0 User Trigger Enable

 1 Acqiris Trigger Enable

[8] BigEndian RW Selection of the readout format: Big Endian / Little Endian.
This bit is forwarded to the output BigEndian .

 0 Little Endian

 1 Big Endian

[23..16] Enb_Dcm RW Enable DCM 0 to 7. See details in the port description of
the used clock manager core. These bits are forwarded to
the output End_Dcm.

[24] Sel_Fsysclk RW Reserved for future use

[31] Reserved RW No function defined. It must be set ‘0’.

6.12.3.3 AcqirisStatus Register
Register Space Register Number Register Address

Customer 6 0x2218

31 30..28 27..25 24 23..16

 Lck_Dcm

15 14..8 7..3 2 1 0

Tmp_Alarm TrigEn CoreStarted

FDK Reference Manual Page 81 of 165

[0] CoreStarted R Core Started. This bit is driven by the input signal
Core_Started .

[2] TrigEn R Trigger Enable. This bit is driven by the input signal
Trigger_Enable .

[15] Tmp_Alarm R Temperature Alarm. This bit is driven by the input signal
Tmp_Alarm .

[16..23] Lck_Dcm R DCM 0 to 7 lock status. ‘1’ Locked. See details in the port
description of the used clock manager core. These bits are
driven by the input signals Lck_Dcm.

6.12.4 Constraints
• IB_Clk Clock Constraint

This core assumes an IB_Clk frequency of 33 MHz. This constraint must be defined for the clock
manager component and is automatically propagated throughout the whole design.

6.12.5 Resource Utilization
Resource count and relative usage in the target Xilinx Virtex II Pro – XC2VP70-6FF1517:

Resources Used Available Utilization
Function Generators 59 66176 0.1%

CLB Slices 38 33088 0.1%

Dffs or Latches 75 69068 0.1%

6.12.6 Version History

Date FDK Version Comments
April 05 Beta 1 Initial Version

July 05 Beta 3 Updated Version.

February 06 Beta 6 Added Software General Reset output.

March 06 Beta 7 Description updated.

FDK Reference Manual Page 82 of 165

6.13 LED Interface

6.13.1 Functional Description
The LED interface core led_interface provides control of 2 front panel LEDs of the AC/SC2x0
modules, either via software through the Internal Bus or directly from the User firmware through
dedicated ports.

These bicolor LEDs are labeled L1 and L2 on the module’s front panel. Each LED can be controlled
independently by defining the code of the color that should be displayed. Are available: black (or
switched off), red, green, and orange.

6.13.2 Port Description

Port Name Size Type Description

IB_Customer
IB_Dirsel
IB_Write
IB_Rdy
IB_TimeO
IB_Addr
IB_DataW
IB_DataR

1
1
1
1
1
32
32
32

In
In
In
Out
In
In
In
Out

Must be connected to the IB-BUS signal with the same name. For
details please refer to the description of the IB-BUS.

IB_Clk 1 In Internal Bus Clock

Reset 1 In Start Up Reset

Ll1_CCd 2 In L1 LED Color Code, if not overridden by LED Register

Ll2_CCd 2 In L2 LED Color Code, if not overridden by LED Register

Ll1_Green 1 Out Drives L1 Green LEDs Anode and L1 Red LEDs Cathode

Ll1_Red 1 Out Drives L1 Red LEDs Anode and L1 Green LEDs Cathode

Ll2_Green 1 Out Drives L2 Green LEDs Anode and L2 Red LEDs Cathode

Ll2_Red 1 Out Drives L2 Red LEDs Anode and L2 Green LEDs Cathode

6.13.3 Detailed Description
There are two different ways of controlling the LED interface. Each LED color can be defined either by
using the LCOL field of the REGISTER or by driving the Ll1_CCd and Ll2_CCd according to TABLE
2.

By default the LEDs are controlled by the firmware. It implies that the LEDs color is defined by the state
of the Ll1_CCd and Ll2_CCd busses if the software does not override it. The default “00” value displays
the red color. This can be observed whenever the FPGA is loaded with the default base design firmware.

Color Code LED Color

00 Red

01 Green

10 Yellow

11 Black (Switched OFF)

Table 2 LED Color Code

The User application can override the color code driven by the firmware by setting the LMD fields in the
REGISTER to 1. In this case the LEDs color is driven by the associated LCOL field whatever the value
of Ll1_CCd/Ll2_CCd ports.

The LED Interface Core is an open core (VHDL source is available) that should be instantiated in any
firmware using the FDK framework, in order to allow remote testing of the LED features.

FDK Reference Manual Page 83 of 165

6.13.4 Register
The LED Register is mapped to a fixed location (0x2288) within the Customer Reserved FPGA Register
space and is available whenever the LED Interface Core is used.

6.13.4.1 LED Control
Register Space Register Number Register Address

Customer 34 0x2288

7 6 5..4 3 2 1..0

LMD2 LCOL2 LMD1 LCOL1

[1..0] LCOL1 RW L1 LED Color Control
 ’00’ Red, ’01’ Green, ’10’ Yellow, ’11’ Black

[3] LMD1 RW Selects if the User Core or the user program controls LED1

 0 LED Interface under User Core control

 1 Remote control by software

[5..4] LCOL2 RW L2 LED Color Control
 ’00’ Red, ’01’ Green, ’10’ Yellow, ’11’ Black

[7] LMD2 RW Selects if the User Core or the user program controls LED2

 0 LED Interface under User Core control

 1 Remote control by software

6.13.5 Constraints
• Clock Constraint

This core assumes an IB_Clk frequency of 33 MHz. This constraint must be defined for the clock
manager component and is automatically propagated throughout the whole design.

• Input/Output Constraint

This core contains four outputs (Ll1_Green, Ll1_Red, Ll2_Green, Ll2_Red) that must be connected via
an OBUF to the IO Pad. Please refer to the ac240.ucf file for LOC constraints. The IOSTANDARD
attributes for these buffers shall be "LVCMOS33" with default drive strength (12mA) and slew rate
(Slow) values.

6.13.6 Resource Utilization
Resource count and relative usage in the target Xilinx Virtex II Pro – XC2VP70-6FF1517:

Resources Used Available Utilization
Global Buffers 0 16 0.00%

Function Generators 54 66176 0.1%

CLB Slices 47 33088 0.1%

Dffs or Latches 93 69068 0.1%

6.13.7 Version History

Date FDK Version Comments

April 05 Beta 1 Initial Version

March 06 Beta 7 Description updated.

FDK Reference Manual Page 84 of 165

6.14 PIO Interface

6.14.1 Functional Description
The core pio_interface provides control of the 2 front panel I/O P1 and I/O P2 MMCX connectors
of the AC/SC2x0 modules, either via software through the Internal Bus or directly from the User
firmware through dedicated ports.

Each connector can independently be defined as an input or an output. If configured as output and if the
Internal Bus Control is used, each connector can output one of 64 internal FPGA signals either for
external control or for debugging.

Half of the multiplexer capability is reserved for signals defined by Agilent to ensure remote testing
whereas the other half is left for the user application or debugging task.

6.14.2 Port Description

Port Name Size Type Description

IO_Fct_Usr 32 In User-defined signals to be multiplexed on the PIO outputs when
using register control

IO_Fct_Acq 32 In Agilent-defined signals to be multiplexed on the PIO outputs when
using register control

Io1_dir 1 In Direction control for the IO1 line if not overridden by register
control

Io1_in 1 Out Input from the IO1 line if not overridden by register control

Io1_out 1 In Output to the IO1 line if not overridden by register control

Io2_dir 1 In Direction control for the IO2 line if not overridden by register
control

Io2_in 1 Out Input from IO2 line if not overridden by register control

Io2_out 1 In Signal to output on IO2 line if not overridden by register control

IB_Customer
IB_Dirsel
IB_Write
IB_Rdy
IB_TimeO
IB_Addr
IB_DataW
IB_DataR

1
1
1
1
1
32
32
32

In
In
In
Out
In
In
In
Out

Must be connected to the IB-BUS signal with the same name. For
details please refer to the description of the IB-BUS.

IB_Clk 1 In Internal Bus Clock

Reset 1 In Start Up Reset

Pio1_in 1 In Input line from IO1 bidirectional buffer

Pio1_out 1 Out Output line to IO1 bidirectional buffer

Pio1_dir 1 Out Direction control of IO1 bidirectional buffer

Pio2_in 1 In Input line from IO2 bidirectional buffer

Pio2_out 1 Out Output line to IO2 bidirectional buffer

Pio2_dir 1 Out Direction control of IO2 bidirectional buffer

6.14.3 Detailed Description
There are two different ways of controlling the front panel IO interface. Each of the 2 IO lines can be
controlled either by the user core (default) or by using the PIO Control Register.

By default the front panel IO lines are controlled by the firmware. It implies that the Pio1_xx and Pio2_xx
signals are driven by the Io1_xx and Io2_xx signals if the software does not override it.

If the PIO control is transferred to the PIO Control Register (by setting IOMDi to ‘1’, for line i), the
output value depends both on the signals connected to the IO_Fct_Acq and IO_Fct_Usr ports and on

FDK Reference Manual Page 85 of 165

the value of the IOFi field. Each port is configured independently but the signals that can be multiplexed
are shared between the two PIO lines.

This multiplexer feature is primarily intended to ease firmware debugging and to allow remote support
and testing by enabling the output of signals of interest. As the IOFi field is 6 bits wide, up to 64
different signals can be connected to the PIO Lines. The first 32 are named IO_Fct_Acq and are
reserved for use by Agilent. The table below shows the current signal allocation. In the future, it will be
completed with signals of interest for the support.

IOF Value Signals Comments
0 ‘0’ For production test

1 ‘1’ For production test

2 ‘0’

3 ‘0’

4 Raw trigger Trigger Signal at pad level

5 Formated_Trigger Trigger Accepted Signal

6 SP_Trigger Trigger Signal at User Core Level

7 Trigger_enable User Trigger Enable

8 Sysclk System Clock

9 SP_Data_Val_A MACA Data Valid

10 SP_Data_Val_B MACB Data Valid

11 - 31 Reserved

Table 3 : PIO Agilent Predefined Signals

The other 32 entries refer to the IO_Fct_Usr ports and can be used to monitor signals of interest from
the user’s core.

Warning : Do not connect clocks to the IO_Fct_Usr port! It could generate mapping errors due to
clock placement constraints that cannot be satisfied when trying to output the clock signal on a PIO line.

6.14.4 Register
The PIO Control Register is mapped to a fixed location (0x2280) within the Customer Reserved FPGA
Register space and is available whenever the PIO Interface Core is used.

6.14.4.1 PIO Control
Register Space Register Number Register Address

Customer 32 0x2280

31..18 17 16 15 14 13..8 7 6 5..0

 INIO2 INIO1 IOMD2 IODIR2 IOF2 IOMD1 IODIR1 IOF1

[5..0] IOF1 RW IO Function to be sent on PIO1 while configured as an output,
i.e. when IOMD1 = 1 and IODIR1 = 1. See Table 3.

[6] IODIR1 RW Defines the direction of PIO1 buffer (0: In / 1: Out)

[7] IOMD1 RW Defines the management mode of PIO1

 0 PIO1 is managed by the User Core (default)

 1 PIO1 is managed by this register

[13..8] IOF2 RW IO Function to be sent on PIO2 while configured as an output,
i.e. when IOMD2 = 1 and IODIR2 = 1. See Table 3.

[14] IODIR2 RW Defines the direction of PIO2 buffer (0: In / 1: Out)

[15] IOMD2 RW Defines the management mode of PIO2

 0 PIO2 is managed by the User Core (default)

FDK Reference Manual Page 86 of 165

 1 PIO2 is managed by this register

[16] INIO1 R Current value on the PIO1 line, if IOMD1 = 1.

[17] INIO2 R Current value on the PIO2 line, if IOMD2 = 1.

6.14.5 Instantiation
This core is already instantiated in the base design example.

It only requires adding external pad buffer for the external (from the FPGA point of view) signals.
Although there may be several ways to insert I/O buffers, the explicit IOBUF instantiation is the solution
preferred by Agilent.

It is highly recommended to connect IO_Fct_Acq as specified in Table 3

6.14.6 Constraints
• Clock Constraint

This core assumes an IB_Clk frequency of 33 MHz. This constraint must be defined for the clock
manager component and is automatically propagated throughout the whole design.

• Input/Output Constraints

This core contains two outputs (pio1_dir , pio2_dir) and two bidirectional signals that must be
connected to the IO Pad via an OBUF/ IOBUF. The IOSTANDARD attributes for these buffers should be
"LVCMOS33" with default drive strength (12mA) and slew rate (Slow) values.

6.14.7 Resource Utilization
Resource count and relative usage in the target Xilinx Virtex II Pro – XC2VP70-6FF1517:

Resources Used Available Utilization
Function Generators 114 66176 0.2%

CLB Slices 57 33088 0.2%

Dffs or Latches 70 69068 0.1%

6.14.8 Version History

Date FDK Version Comments
April 05 Beta 1 Initial Version

March 06 Beta 7 Description updated.

FDK Reference Manual Page 87 of 165

6.15 Temperature Interface

6.15.1 Functional Description
The core acq_tmp_struct provides control of the temperature monitoring chip that senses the FPGA
temperature diode integrated within the FPGA device. When enabled it performs a sense cycle every 8
seconds. It can generate an alarm if the observed temperature is greater than a programmable threshold.

6.15.2 Port Description

Port Name Size Type Description

IB_Customer
IB_Dirsel
IB_Write
IB_Rdy
IB_TimeO
IB_Addr
IB_DataW
IB_DataR

1
1
1
1
1
32
32
32

In
In
In
Out
In
In
In
Out

Must be connected to the IB-BUS signal with the same name. For
details please refer to the description of the IB-BUS

IB_Clk 1 In Internal Bus Clock

Reset 1 In Start Up Reset

Tmp_Alarm 1 Out Temperature Alarm

Tmp_Sclk 1 Out Temperature Monitoring Serial Clock

Tmp_Sel 1 Out Temperature Monitoring Serial Line Selection

Tmp_Sdata 1 In Temperature Monitoring Serial Data

6.15.3 Detailed Description
When enabled by writing at 1 to the TMPE bit of the TempMonitor register, a new value is automatically
read every 8 second. The last value read is available as the lower 13 bits of the TempMonitor register.

The temperature value is formatted as a 13-bit field that contains the sign at the leftmost position and the
absolute value on the 12 lower bits. The temperature resolution is 0.0625°C. Thus reading back a value of
0x822F would correspond to an FPGA temperature of 0x22F * 0.0625 = + 34.9375°C.

The temperature monitoring core lets the user define a programmable temperature threshold. If the current
temperature exceeds the programmed temperature threshold field and if ALAE is set, the Tmp_alarm
event is triggered.

Temperature monitoring is highly recommended, especially in a processing intensive context, in order to
avoid damage to the FPGA. It should be performed either by monitoring the temperature register with
software or directly within the firmware by using the Tmp_Alarm signal to halt the user core activity.

6.15.4 Register
The TempMonitor Register is mapped to a fixed location (0x221C) within the Customer Reserved FPGA
Register space and is available whenever the Temperature Interface Core is used.
It is used to retrieve the internal temperature of the Data Processing Unit and to set the temperature
threshold for the temperature alarm.

6.15.4.1 TempMonitor
Register Space Register Number Register Address

Customer 7 0x221C

31 30..29 28..16 15 14..13 12..0

ALAE -- Tmp_Threshold TMPE -- TMP_Monitor

[12..0] TMP_Monitor R FPGA temperature when monitoring is enabled

FDK Reference Manual Page 88 of 165

[15] TMPE RW FPGA Temperature Monitoring Enable

[28..16] Tmp_Threshold RW FPGA Temperature Threshold for user Temp Alarm

[31] ALAE RW FPGA Temperature Alarm Enable

6.15.5 Constraints
• Clock Constraint

This core assumes an IB_Clk frequency of 33 MHz. This constraint must be defined for the clock
manager component and is automatically propagated throughout the whole design.

• Input/Output Constraint

This core contains two outputs (Tmp_Sclk , Tmp_Sel) and one input (Tmp_Data) that must be
connected to the IO Pads via an OBUF/ IBUF. The IOSTANDARD attributes for these buffers should be
"LVCMOS33" with default drive strength (12mA) and slew rate (Slow) values.

6.15.6 Resource Utilization
Resource count and relative usage in the target Xilinx Virtex II Pro – XC2VP70-6FF1517:

Resources Used Available Utilization
Function Generators 132 66176 0.2%

CLB Slices 76 33088 0.2%

Dffs or Latches 152 69068 0.2%

6.15.7 Version History

Date FDK Version Comments
April 05 Beta 1 Initial Version

March 06 Beta 7 Description updated

FDK Reference Manual Page 89 of 165

6.16 DAC Interface

6.16.1 Functional Description
The core dac_interface provides control of the 16-bit Digital to Analog Converter (DAC) that drives
the analog output (ANL OUT) on the front panel MMCX connector, either via software through the
Internal Bus or directly from the User firmware through dedicated ports.

This analog signal can be driven within a [-5V to +5V] range and has rise/fall times faster than 500ns, the
DAC settling time being specified at 1us.

There are three predefined test patterns that are already implemented within the DAC Interface Core: a
positive square waveform, a full scale square waveform, and a rising ramp over the full scale range.

6.16.2 Port Description

Port Name Size Type Description
DAC_DIN 16 In 16-bit data word to be output to the DAC

DAC_WR 1 In Data Write Request

DAC_BUSY 1 Out DAC Interface Availability (=’0’)

DAC_DONE 1 Out DAC Interface Conversion Completion (=’1’)

IB_Customer
IB_Dirsel
IB_Write
IB_Rdy
IB_TimeO
IB_Addr
IB_DataW
IB_DataR

1
1
1
1
1
32
32
32

In
In
In
Out
In
In
In
Out

Must be connected to the IB-BUS signal with the same name. For
details please refer to the description of the IB-BUS.

IB_Clk 1 In Internal Bus Clock

Reset 1 In Start Up Reset

SCS_N 1 Out DAC Chip Select

SDATA 1 Out DAC Serial Data Line

SCLR_N 1 Out DAC Clear

SCK 1 Out DAC Serial Clock

6.16.3 Detailed Description
There are two different ways of controlling the DAC interface. It can be controlled either by the user core
(default) or by using the DAC Control Register.

By default, the user core drives the DAC interface by looking at its availability (DAC_BUSY should be
negated), writing the 16-bit data code to DAC_DIN, and asserting the DAC_WR request. In response, the
DAC Interface asserts the DAC_BUSY signal to prevent further write requests and serializes the data onto
the DAC serial interface. The DAC Interface announces termination of the serial transfer, i.e. loading of
the DAC, by asserting the DAC_DONE signal and simultaneously negating the DAC_BUSY signal (see the
following timing diagram).

The theoretical voltage is defined by

V
DINDAC

Vout ¨10*
65536

32768_







 −=

FDK Reference Manual Page 90 of 165

Note 1: Design limitation due to the use of IB_Clk /2 to generate SCLK.

Note 2: DAC_DONE remains high until the next DAC_WR request.

Note 3: Data are shifted out starting from the Most Significant Bit.

The next DAC value can be accepted no earlier than 35 IB_Clk cycles (1050ns) after the previous write
to DAC_IN. This limitation derives from the fact that the DAC Interface core uses a serial clock at half
the IB_Clk frequency (16.67 MHz) because the DAC device cannot sustain serial clocks higher than 25
MHz. The full scale settling time of the DAC is typically 1µs.

The DAC Interface can also be controlled by the DAC Control Register by writing 1 to the DMOD field.
The 16-bit DAC value is defined by the DAC_VAL field and the DSND field acts as the DAC_WR port. In
this mode, the DAC Interface provides three test patterns that can be selected with the TPAT field. By
default, the DAC Interface uses the DAC_VAL value. The table below presents the test patterns that are
automatically generated on the DAC output when the TPAT field is different from “00” and DMOD = 1.

TPAT Value Test Pattern Comments
00 Level defined by DAC_VAL Sent upon write to DSND field

01 Positive square signal 0-5V / f= 246 KHz

10 Bipolar square signal -5V to + 5V, f= 246 KHz

11 Ramp (-5V to 5V) -5V to +5V, f= 14.96 Hz

Table 4 : DAC Test Patterns

6.16.4 Register
The DAC Control Register is mapped to a fixed location (0x2284) within the Customer Reserved FPGA
Register space and is available whenever the DAC Interface Core is used.

6.16.4.1 DAC Control
Register Space Register Number Register Address

Customer 33 0x2284

31..20 21..20 19 18 17 16 15..0

 TPAT DMOD DSND DUSY DONE DAC_VAL

[15..0] DAC_VAL RW DAC value

If DMOD = ‘1’, it is loaded by the software and sent to the DAC
If DMOD = ‘0’, it is the last value loaded by the user core

[16] DONE R ‘1’ = DAC Interface has completed the last conversion

[17] BUSY R ‘1’ = DAC Interface not available (initializing or still
converting)

[18] DSND RW Send the word defined by DAC_VAL to the DAC interface when

FDK Reference Manual Page 91 of 165

DMOD =’1’.

[19] DMOD RW Defines the mode used for the DAC interface control:

 0 DAC under User Core control

 1 Remote control by software

[21..20] TPAT Defines the test pattern to be generated after configuration to
remote control (DMOD = ‘1’)

6.16.5 Constraints
• Clock Constraint

This core assumes an IB_Clk frequency of 33 MHz. This constraint must be defined for the clock
manager component and is automatically propagated throughout the whole design.

• Input/Output Constraints

This core contains four outputs (SCS_N, SCLR_N, SDATA, SCLK) that must be connected via an OBUF
to the IO. The IOSTANDARD attributes for these buffers should be "LVCMOS33" with default drive
strength (12mA) and slew rate (Slow) values.

6.16.6 Resource Utilization
Resource count and relative usage in the target Xilinx Virtex II Pro – XC2VP70-6FF1517:

Resources Used Available Utilization
Function Generators 169 66176 0.3%

CLB Slices 85 33088 0.3%

Dffs or Latches 120 69068 0.2%

6.16.7 Version History

Date Version Comments
April 05 Beta 1 Initial Version

March 06 Beta 7 Description updated.

FDK Reference Manual Page 92 of 165

6.17 Dlink Interface

6.17.1 Functional Description
The core dlink_interface is a design example that performs data serialization and de-serialization
on up to 7 differential lines connected to the µDB connector (I/O EXT) located on the front panel of
AC2x0 modules.

The 15 pin µDB connector offers either 14 closely coupled individual lines or 7 differential pairs that can
be configured to any standard supported on banks supplied with a 2.5V Voltage reference. As there is no
active logic between the pin connector and the FPGA buffer, the user can independently instantiate any
type of buffer (input or output) on each available line.

This core is primary aimed at testing of the µDB connector. It can easily be removed from the user design
or replaced by a more straightforward user control of the IO buffers.

6.17.2 Port Description

Port Name Size Type Description

IB_Customer
IB_Dirsel
IB_Write
IB_Rdy
IB_TimeO
IB_Addr
IB_DataW
IB_DataR

1
1
1
1
1
32
32
32

In
In
In
Out
In
In
In
Out

Must be connected to the IB-BUS signal with the same name. For
details please refer to the description of the IB-BUS.

IB_Clk 1 In Internal Bus Clock

Reset 1 In Start Up Reset

IO_Sel 1 In Serial Line Select Input Signal

IO_Data 1 In Serial Data Input Signal

IO_Clk 1 In Serial Clock Input Signal

S_Clk 1 In Serial Clock Reference used for Serial transmission

S_CS 1 Out Serial Line Select Output Signal

S_DATA 1 Out Serial Data Output Signal

S_CK 1 Out Serial Clock Output Signal

S_CLR 1 Out Serial Clear Output Signal

IO_DDO 7 Out Parallel Data Bus Out

IO_DDI 7 In Parallel Data Bus In

DZ_CRT 7 Out Impedance Control for LVPECL Differential Inputs 1

6.17.3 Detailed Description
The core dlink_interface can be used in several ways depending on the configuration of the IO
Buffers. The FDK Base Design uses this core as serializer / de-serializer on 3 differential output pairs and
3 differential input pairs. These I/O differential pairs are externally connected with each other in a loop
configuration within the tester component in the VHDL Test Bench.

The data to transfer is loaded into the Dlink_Dout register. When enabled, by writing the DENB bit of the
Dlink_Control register, the dlink_interface may shift out all or parts of the Dlink_Dout register
contents using a dedicated Serial Clock (S_Clk). The BYE field of the Dlink_Control register defines the
number of bytes of Dlink_Dout that are sent to the serial interface. The Dlink interface also provides a

1 Note: Impedance Control bits should be asserted for each LVPECL differential pair used as Input.
Otherwise, it must be left at its default value ‘0’.

FDK Reference Manual Page 93 of 165

receiver that is able to de-serialize the data into the Dlink_DIN register and flags the data reception into
the DAVL bit of the Dlink_Control register.

The dlink_interface can also be used as a simple input or output (or any mix thereof) buffer by
using the IO_DDO and IO_DDI ports. These ports are directly connected to the DDO and DDI fields of
the Dlink_Control register and can be used to interface with dedicated IO buffers.

The table below presents the pinout allocation for the µDB connector.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
DP6_p DP6_n DP5_p DP5_n DP4_p DP4_n DP0_p DP0_n DP3_p DP3_n DP2_p DP2_n DP1_p DP1_n GND

Table 5 : µDB Connector Pinout

DPx_n refers to the DIO_DPx_n line defined in the Base Test Design.

6.17.4 Registers
The Dlink_Control register controls the data transmission / reception to/from the Dlink. The Dlink_Dout
register defines the data to be sent to the Dlink and the Dlink_Din contains the data received from the
Dlink. They are mapped to a fixed location (0x2290, 0x2294, and 0x2298) within the Customer Reserved
FPGA Register space and are available whenever the Dlink Interface Core is used.

6.17.4.1 Dlink_Control
Register Space Register Number Register Address

Customer 36 0x2290

31 30..24 23..17 16 15 14..12 11 10 9..8 7 6..0

-- DDO DDI DAVL DENB -- SEND -- BYE -- DPDIR

[6..0] DPDIR RW Input Impedance control for each differential pair

[9..8] BYE RW Byte Enable: Defines the number of bytes in the Dlink_Dout
register that should be shifted out with the SEND Command

‘0’ = 1 byte, ‘1’ = 2 bytes, ‘2’ = 3 bytes, ‘3’ = 4 bytes

[11] SEND RW Start sending the Dlink_Dout contents to the DLink

[15] DENB RW Data Enable: ‘0’ = interface disabled, ‘1’ = interface enabled

[16] DAVL R Data Available: Asserted upon data receipt, reset upon register read

[23..17] DDI R Digital Data In. Meaningful only if the micro DB link is used with
7 differential inputs

[30..24] DDO RW Digital Data Out. Meaningful only if the Dlink is used with 7
differential outputs

6.17.4.2 Dlink_Dout Register
Register Space Register Number Register Address

Customer 37 0x2294

31..0

DOUT

[31..0] DOUT RW Defines the data word to be sent to the Dlink

6.17.4.3 DLink_Din Register

FDK Reference Manual Page 94 of 165

Register Space Register Number Register Address

Customer 38 0x2298

31..0

DIN

[31..0] DIN RW Last data word received from the Dlink

6.17.5 Instantiation
This core is already instantiated in the base design example.

The Dlink Interface core may be used in several ways depending on the direction and type of the I/O
buffers. The Base Design Instantiation enables the “serializer / de-serializer “ configuration.

In the Base Design Configuration, IO_DDO should be looped into IO_DDI to successfully run the test
bench. Sysclk2 should be connected to S_Clk . DDO(6) is connected to DIO_DP6 only for test
purposes.

Other configurations are possible with the same core.

Please note that even if the Dlink Interface core is not used for controlling the lines to the µDB connector,
DIO_CFG(6:0) must be driven to ‘0’ to avoid any transmission problems.

6.17.6 Constraints
• Clock Constraint

This core assumes an IB_Clk frequency of 33 MHz and an S_Clk frequency of 133 MHz. This
constraint must be defined for the clock manager component and is automatically propagated throughout
the whole design.

In order to save precious BUFG resources the IO_Clk should be mapped to long line resources (low
skew lines). This is done at the Base design level using the following declarations

attribute uselowskewlines: string;

attribute uselowskewlines of IOL_DP2: signal is "yes";

• Input/Output Constraints

DIO_DPx_n /_p ports should be connected to external I/O buffers

The IOSTANDARD attributes for these buffers for DIO_DPx_n /_p could be either differential
(LVDS/LVPECL) or any single ended 2.5V signaling standard (e.g. LVCMOS25). Buffer type (input or
output) is left to the requirements of the user application.

Please refer to the ac240.ucf file for LOC constraints. The IOSTANDARD attributes for these buffers
should be "LVCMOS33" with default drive strength (12mA) and slew rate (Slow) values.

6.17.7 Resource Utilization
Resource count and relative usage in the target Xilinx Virtex II Pro – XC2VP70-6FF1517:

Resources Used Available Utilization
Function Generators 345 66176 0.5%

CLB Slices 222 33088 0.7%

Dffs or Latches 443 69068 0.6%

6.17.8 Version History

Date Version Comments
April 05 Beta 1 Initial Version

March 06 Beta 7 Description updated.

FDK Reference Manual Page 95 of 165

6.18 Dual Port Memory Interface
The core dp_interface is the interface to the (optional) external dual port SRAM. The size of the
dual port memory is 8 Megabits, equivalent to 1 MegaSamples. This is somewhat more than the total of 5
Megabits available within the FPGA block RAMs, and much less compared to the (optional) external
dynamic RAM. Its advantage lies in its usage, much simpler as compared to the dynamic RAM.

The Dual Port is functional only on boards of revision C and later.

6.18.1 Functional Description
The dual port SRAM has two 64-bit user ports operating at up to 133 MHz. This is enough to store the
data stream at 2 GS/s, using both ports. However, it cannot be read simultaneously at the same speed.

Its versatility makes it easy to implement applications with random addressing, such as histograms.

The dual port RAM can be read or written by the user program through the Internal Bus port. The Internal
Bus port and the User port are multiplexed and cannot be used simultaneously. The Internal Bus port runs
at 33 MHz. The priority of the Internal Bus over the User port is controlled by the bit DPM_Local in the
DP_Control register.

Each port handles both single read/write or burst read/write operations.

The memory can be reset with the DPM_reset bit of the DP_Control register or with the core input
signal DPM_Reset. A reset should be executed by the program at least once after the dedicated DCM is
enabled.

6.18.1.1 User Port
Each port has independent clock, data, address, read / write, and byte enable control signals. The user
may connect the clock to any desired frequency up to 133 MHz. The data bus is 64 bits wide.

On a single port, back-to-back read/write can only be done at half the clock rate. A read can follow a
write, but a write can follow a read only after a delay of 2 clock cycles.

If necessary, full speed back-to-back read/write should be implemented with both ports, one for reading
and the other for writing. This achieves a throughput of max 2.13 GB/s with a clock frequency of 133
MHz on each port (133 M x 8 x 2 = 2.13 G).

6.18.1.2 Internal Bus Port
Logically, the dual port RAM is accessed as a 32-bit memory of 256 Kwords, using the Indirect Access
mode of the Local Bus interface.

The bit 1 of the DP_Control register selects which port, User Port A or the Internal Bus port, takes control
of the memory port A. The selection must be done prior to accessing the memory.

The start address is set by writing into the Indirect Address register. Correct values are (0 + N * 4), where
N [0…256K] is the requested 32-bit word. Even values of N access the lower 32 bits of the memory
while odd values of N access the upper 32 bits of the memory.

6.18.1.3 Self-Testing

FDK Reference Manual Page 96 of 165

Three patterns are implemented:

� Memory positions are set to values that are incremented. The 32-bit data are split in two words, a
17-bit counter and a 15-bit counter. This makes the pattern unique over the entire memory.

� All memory positions are set to the value of the test pattern register.

� All memory positions are set to the inverted value of the test pattern register.

The test can be run in these different modes:

1. No stop on error. This mode tests the entire memory. The T_Status bit in the
DPStatus register is set ‘1’ if at least one error occurs. The T_End bit is set at the end
of the test.

2. Stop on error. This mode tests the entire memory. The test is suspended when an error
occurs. The test position, the test data, and the test result can be read by software.. The
test is continuously repeated at the position where the error occurs (write-read-test). The
T_error bit in the DP_Status register indicates if the current test is successful or not.
Test repetition occurs until the program activates (for at least 2 us) and deactivates the
T_Continue bit. This is useful for debugging. The test can be aborted by deactivating
T_Start .

3. Automatic Error. This test simulates the behavior of the test when an error occurs. An
error will be automatically generated at memory address 0x8.

4. Short memory. This is to shorten the simulation time. In short memory mode, only the
first 16 positions are tested.

6.18.2 Instantiation
The core is already instantiated in the base design example. It is always associated with its companion,
dp_interface_io , which handles the Xilinx IO primitives.

6.18.3 Port Description

Signal Size Type Short Description

INTERNAL BUS

IB_Customer
IB_Dirsel
IB_Write
IB_Valid
IB_Rdy
IB_TimeO
IB_End
IB_IndirCtr
IB_Addr
IB_DataW
IB_DataR

1
1
1
1
1
1
1
1
31
32
32

In
In
In
In
Out
In
Out
In
In
In
Out

Must be connected to the IB-BUS signal with the same name.
For details please refer to the description of the IB-BUS.

IB_Clk 1 In Internal Bus clock, must be connected to lbclkg , the Local Bus
clock

Reset 1 In Reset, must be connected to the general reset Dreset

USER Port: x=A or B, stands for User Port A or User Port B

UPx_select 2x1 In Port selection for read and write. It must remain ‘1’ for one clock
cycle for single access or multiple times for burst access. On
each port, a write can be directly followed by a read or a write
access. A read can be directly followed only by a read. A
minimum of two 2-clock cycles must be inserted after a read
before a write can occur.

UPx_ADS 2x1 In Address strobe. When ‘1’, the value on UPx_Address is stored
in the auto increment address register of the memory, otherwise
the current value of the auto increment register of the memory is
used.

UPx_Write 2x1 In It must be set to ‘1’ for writing, ‘0’ for reading. Simultaneous

FDK Reference Manual Page 97 of 165

Signal Size Type Short Description
writing to the same location on memory ports A and B will store
unknown data.

UPx_WriteVeto 1 In When ‘1’, the dual memory port does not accept any write access

UPx_Address 2x20 In Address. The value is always in bytes, independently of the
selected data bus width.

UPx_DataW 2x64 In Bus for data write

UPx_DataR 2x64 Out Bus for data read

UPx_Valid 2x1 In After a read cycle, will be ‘1’ for one cycle when the data is
ready. This occurs 6 clock cycles after UPx_select has been
set.

UPx_clock 2x1 In Memory port clock. It can be set to any frequency up to 133
MHz.

UPA_Busy 1 Out User Port A only: ‘1’ when the user port cannot be accessed.
This is the case when the program reads or writes the dual port
memory.

DPM_Reset 1 In ‘1’ resets the Dual Port Memory

OUTPUT to Dual Port Memory: x=A or B, stands for Memory Port A or Port B

DPx_Select 2x1 Out Portx Select.

DPx_ADS_n 2x1 Out Portx Address Strobe.

DPx_Write_n 2x1 Out Portx Direction

DPx_Address 2x17 Out Portx Address

DPx_CNTEN_n 2x1 Out Portx Address Counter Increment

DPx_BE_n 2x7 Out Portx Byte Enable. “y” is any value from 0 to 7.

DPx_DataW_hz 2x1 Out Portx output enable for FPGA Data Bus output

DPx_DataW 2x64 In Portx Data Bus Output

DPx_DataR 2x64 Out Portx Data Bus Input

DPM_Reset_n 1 Out Common reset for port A and port B

FDK Reference Manual Page 98 of 165

6.18.4 User Port Timing Diagram
The access to the memory is enabled when Upx_Select is active. The address must be defined and
stored in the memory by simultaneously activating UPx_ADS on the first read/write transaction.

Afterwards, the user may continue using the address strobe and supplying an address (which may be
random or incremented). Alternatively, the user may stop activating the address strobe, in which case the
memory circuit automatically increments the address. It must be remembered that for the User port A
only (because the memory port A is shared for the User port A and the Internal Bus port), the address in
the memory chip could be modified when the application software accesses the memory (via the Internal
Bus port).

6.18.5 Registers

6.18.5.1 DP_Control
Register Space Register Number Register Address

Customer 39 0x229C

31..9 8

 T_short

7 6 5 4 3..2 1 0

T_ForceError T_StopOnError T_Continue T_Start DPM_ Local DPM_Reset

[0] DPM_Reset RW Reset of dual port memory. It must be set to ‘1’ and
back to ‘0’ at least once after the FPGA firmware is
reloaded.

[1] DPM_Local RW Select Master of memory port A

 0 Access to the memory port A is controlled by the
User Port A port

 1 Access to the memory port A is controlled by the
Internal Bus port.

[4] T_Start RW ‘1’ Starts the test sequence. ‘0’ aborts the test sequence

[5] T_Continue RW Continue the test after an error was found in the mode
StopOnError . Test_Continue must be toggled to
‘1’ and back to ‘0’. Duration of the ‘1’ state must be
greater than 2 µs.

[6] T_StopOnError RW ‘1’ to set the debug StopOnError mode, ‘0’ to
complete the whole test without stopping

[7] T_ForceError RW An error will automatically be generated at address 0x8.

[8] T_short RW All test patterns are executed but only for memory
positions 0 to 15. This is useful for simulation only.

FDK Reference Manual Page 99 of 165

6.18.5.2 DP_TestPatternControl
Register Space Register Number Register Address

Customer 40 0x22A0

31..17 16..0

 Test_Pattern

[16..0] Test_Pattern RW Test pattern

6.18.5.3 DP_Status
Register Space Register Number Register Address

Customer 41 0x22A4

31..24 23 22 21 20 19..17 16..0

 T_Chip T_Error T_Status T_End T_Address

[16..0] T_Address R Current test address

[20] T_End R End of test flag: ‘1’ indicates the test has completed. The flag is reset
by the rising edge of the bit T_Start in the DP_Control register.

[21] T_Status R Test status flag: The flag is reset by the rising edge of the bit
T_Start of the DP_Control register.

 0 The entire test completed without error

 1 There was at least one error

[22] T_Error R Test error flag, is the status of the current test at the current memory
address. The flag is reset by the rising edge of the bit T_Start of
the DP_Control register.

 0 The current test failed

 1 The current test passed

[23] T_Chip R When an error occurred, indicates which memory chip failed. ‘0’ for
the instance NDP1A, ‘1’ for the instance NDP2A.

6.18.5.4 DP_TestValue
Register Space Register Number Register Address

Customer 42 0x22A8

31..0

TestValue

[31..0] TestValue RW The value written at the current/last test address

6.18.5.5 DP_TestResult
Register Space Register Number Register Address

Customer 43 0x22AC

31..0

TestResult

[31..0] TestResult RW The value read at the current/last test address

FDK Reference Manual Page 100 of 165

6.18.6 Accessing the Dual Port Memory
The Dual Port memory can be read or written in Indirect Access mode using the Indirect Addressing
register. The maximum length is 2 Mwords of 32 bits. The Indirect Address Register and the Buffer
Identifier Register must be set prior to reading or writing the memory.

6.18.6.1 DPMemory
Register Space Register Number Register Address Buffer Identifier

Customer 0 0x2200 0x04

31..0

RWData

[31..0] RWData RW Data format depends on the customer application.

6.18.7 Constraints
• Clock Constraint

This core assumes an IB_Clk frequency of 33 MHz. This constraint must be defined for the clock
manager component and is automatically propagated throughout the whole design.

• User Port Clock Constraints

This core assumes UPA_clock and UPB_clock frequencies of maximum 133 MHz. This constraint
must be defined for the clock manager component and is automatically propagated throughout the whole
design.

• Output and Input Signal Constraints

All FPGA inputs / outputs are LVTTL. All must be registered within the IOB. All must have the drive
strength set to FAST – 12 mA.

6.18.8 Resource Utilization
Resource count and relative usage in the target Xilinx Virtex II Pro – XC2VP70-6FF1517:

Resources Used Available Utilization
Block RAMs 2 328 0.6%

Function Generators 843 66176 1.3%

CLB Slices 729 33088 2.2%

Dffs or Latches 1457 69068 2.1%

6.18.9 Version History

Date FDK Version Comments
February 06 Beta 6 Initial Version

March 06 Beta 7 Description updated.

November 06 1.0 Bit DPM_Local of the register DP_Control was described the
opposite ways it effectively behave. Corrected.

FDK Reference Manual Page 101 of 165

6.19 Dual Port Memory Control Example
The core dp_ctr_example is delivered as an example of control for the core dp_interface . Its
function is to store a portion of the incoming data streams to the dual port memory after a trigger
occurred, until the memory is full. Developers should remove it or may adapt it to their own application.

The two incoming data streams, 2x16 bytes at each sysclk period are multiplexed and sent to the dual
port interface as two new streams of 2x8 bytes with sysclk2 , which is twice the sysclk frequency.

The first stream is sent to the port A of the dual port memory interface. It is written starting at address 0.
The second stream is sent to the port B of the dual port memory interface. It is written starting at the
middle of the memory.

The control bit Start enables storage to the dual port memory. Depending on the state of the control bit
StartOnTrigger , storage will effectively begin either immediately or after the first trigger occurs. Of
course the stream must be enabled prior to activating Start . The storage stops if Start is set back to
’0’ or when the entire memory has been filled.

In mode start on trigger, the output signal TriggerEnable will be set ‘1’ until the input signal
SP_Trigger becomes ‘1’ indicating a trigger has been detected.

The status bit FULL is set to ‘1’ after the dual port memory has been entirely filled. It is set back to ‘0’
when START is again activated.

6.19.1 Port Description

Signal Size Type Short Description

IB_Customer
IB_Dirsel
IB_Write
IB_Rdy
IB_TimeO
IB_Addr
IB_DataW
IB_DataR

1
1
1
1
1
31
32
32

In
In
In
Out
In
In
In
Out

Must be connected to the IB-BUS signal with the same name. For details
please refer to the description of the IB-BUS.

IB_Clk 1 In Internal Bus clock, must be connected to lbclkg

Reset 1 In Reset, must be connected to the general reset Dreset

Data Stream Input and Trigger

SP_Data_A 128 In Samples from channel A

SP_Data_Val_A 1 In Data valid from channel A

SP_Data_B 128 In Samples from channel B (AC/SC240 only)

SP_Data_Val_B 1 In Data valid from channel B (AC/SC240 only)

SP_Trigger 1 In Trigger marker

Enable_Trigger 1 Out Trigger Enable to the Trigger core

OUTPUT to Dual Port Memory: x=A or B, stands for Memory Port A or Port B

UPx_ADS 2x1 Out Address strobe. When ‘1’, the value on UPx_Address is stored in the
auto increment address register of the memory, otherwise the current
value of the auto increment register of the memory is used.

UPx_Write 2x1 Out It must be set to ‘1’ for writing, ‘0’ for reading. Simultaneous writing to
the same location on memory ports A and B will store unknown data.

UPx_WriteVeto 1 In When ‘1’, the dual memory port does not accept any write access

UPx_Address 2x20 Out Address. The value is always in bytes, independently of the selected data
bus width.

UPx_DataW 2x64 Out Bus for data write

UPx_DataR 2x64 In Bus for data read

UPx_Ready 2x1 Out After a read cycle, will be ‘1’ for one cycle when the data is ready. This
occurs 6 clock cycles after UPx_select has been set.

FDK Reference Manual Page 102 of 165

Signal Size Type Short Description

UPx_clock 2x1 Out Memory port clock. It can be set to any frequency up to 133 MHz.

UPA_Busy 1 In User Port A only: ‘1’ when the user port cannot be accessed. This is the
case when the program reads or writes the dual port memory.

6.19.2 Registers

6.19.2.1 Control Register
Register Space Register Number Register Address

Customer 66 0x2308

31..2 1 0

-- Full Start

WRITE

[0] Start W Write only bit. Set Start to ‘1’ will enable data storage to
the dual port memory. Set to ‘0’ will stop data storage.

[1] StartOnTrigger RW ‘0’: Storage will start immediately after Start has been
set ‘1’.

‘1’: Storage will start after the first trigger occurrence
after Start has been set ‘1’.

READ

[0] Full R Read only bit. ‘1’ indicate the dual port memory has
been entirely filled.

6.19.3 Resource Utilization
Resource count and relative usage in the target Xilinx Virtex II Pro – XC2VP70-6FF1517:

Resources Used Available Utilization
Function Generators 185 66176 0.3%

CLB Slices 212 33088 0.6%

Dffs or Latches 424 69068 0.6%

6.19.4 Version History

Date FDK Version Comments
February 06 Beta 6 Initial version

March 06 Beta 7 Description updated.

November 06 1.0 Updated port description.
Updated operation description
Triggered mode is now programmable.
BufferFull and stop filling were badly implemented. Corrected.

FDK Reference Manual Page 103 of 165

6.20 Serial Front Panel Data Port Controller

6.20.1 Functional Description
The Serial Front Panel Data Port (sFPDP) core, slc_controller , implements a Data Link layer
compliant with the Serial Front Panel Data Specification (ANSI/VITA 17.1-2003). It is intended to be
used together with one RocketIO Multi Gigabit Transceiver (Virtex II Pro primitive) that implements the
physical layer of the Data Link. The physical media could be either an optical or a copper link at up to
2.5Gbit/s.

Note: It is assumed that the user of the sFPDP core has a basic knowledge of networking technology and
is familiar with the Serial Front Panel Data Port protocol and with the RocketIO primitives. Detailed
information can be found in

• [RD1] ANSI/VITA 17.1-2003 Serial Front Panel Data Port

• [RD2] RocketIO Transceivers User Guide- Ug024-V2.5, Xilinx 9.12.2004

• [RD3] LocalLink Interface Specification, DS230, Xilinx 18.10.2002

Convention: The acronym TX points out to anything related to the Transmit path, whereas the RX one to
the Receive path.

The figure hereafter presents a functional block diagram of the sFPDP Controller.

Configuration and control of the core are performed through dedicated registers that are accessed with the
Agilent Internal Bus. Data transfers are performed using the Local Link standard used by Xilinx for
packet transmission (See [RD3]).

The sFPDP core performs all the tasks related to the framing of user data into the Fiber Frame (TX),
including the CRC32 generation and insertion, from its internal 16 KB TX FIFO. It also performs all the
tasks related to retrieving the user data from its internal 2 KB RX FIFO. The sFPDP core instantiates one
RocketIO MGT primitive and handles all the physical layer control tasks, including the transceiver
control and initialization. The physical link is directly managed by the RocketIO transceiver, which
implements all the functions involved in the 8B/10B coding and decoding including clock recovery.

6.20.2 Port Description

Port Name Size Type Description

SLC_Base_Add 12 In Twelve rightmost bits of the Controller Base Address

IB_Customer
IB_Dirsel
IB_Write
IB_Rdy
IB_TimeO

1
1
1
1
1

In
In
In
Out
In

Must be connected to the IB-BUS signal with the same name. For details
please refer to the description of the IB-BUS.

FDK Reference Manual Page 104 of 165

Port Name Size Type Description
IB_Addr
IB_DataW
IB_DataR

32
32
32

In
In
Out

IB_Clk 1 In Internal Bus Clock – 33 MHz

Reset 1 In Start Up Reset

Tx_Data_Usr 128 In TX Data Bus. It contains the data of the frame to be transmitted.

Tx_Rem_Usr 4 In TX Data Remainder: Indicates the number of valid bytes on given
transfers.

Tx_Sof_n_Usr 1 In TX Start of Frame: Indicates the first transfer for a given frame.

Tx_Eof_n_Usr 1 In TX End of Frame: Indicates the last transfer for a given frame.

Tx_Src_rdy_n_
Usr

1 In TX Source ready : Indicates that the source is ready to transfer data

Tx_Dst_rdy_n_
Usr

1 Out TX Destination ready : Indicates that the core is ready to accept data

Rx_Data 40 Out RX Data Bus. It contains the data and the error bus of the received
frame.

Rx_Rem 4 Out RX Data Remainder: Indicates the number of valid bytes on given
transfers.

Rx_Sof_n 1 Out RX Start of Frame: Indicates the first transfer for a given frame.

Rx_Eof_n 1 Out RX End of Frame: Indicates the last transfer for a given frame.

Rx_Src_rdy_n 1 Out RX Source ready : Indicates that the core is ready to transfer data

Rx_Dst_rdy_n 1 In RX Destination ready : Indicates that the user is ready to accept data

Rx_Pio1 1 Out PIO1 – Received sFPDP Signal Status

Rx_Pio2 1 Out PIO2 – Received sFPDP Signal Status

Rx_Dir 1 Out DIR – Received sFPDP Signal Status

Tx_Nrdy 1 Out NRDY – Received sFPDP Signal Status

Rx_Loop 1 In Loop command for dynamic loop configuration

Tx_Empty 1 Out TX FIFO Status: A ‘1’ indicates that the TX FIFO is empty.

Link_Err 1 Out Data Link Error: it indicates that the data link has encountered an error
condition

Link_Rdy 1 Out Data Link Ready: it indicates that the data link is initialized and ready
for the transmission or reception of data.

Sysclk 1 In User Clock used to store and retrieve User Frame

Refclk 1 In Reference clock used by the MGT for serial transmission

Usrclk 1 In User Clock used for reading/writing the data buffer

Usrclk2 1 In Clock used to transfer data and status within the FPGA fabric

Usrclk_lock 1 In Lock Status of the DCM that drives Usrclk/Usrclk2

TXN 1 Out Transmit differential port (FPGA external)

TXP 1 Out Transmit differential port (FPGA external)

RXN 1 Out Receive differential port (FPGA external)

RXP 1 Out Receive differential port (FPGA external)

Phy_Rx_Loss 1 In Physical Layer Loss of RX signal

Phy_Tx_Fault 1 In Physical Layer TX Fault

Phy_Tx_Enable 1 Out Physical Layer Enable

FDK Reference Manual Page 105 of 165

6.20.3 Detailed Description
Basically, the core architecture is divided into two main blocks – the TX Controller Block which
implements all the operations involved in the data transmission and the RX Block which implements all
the operations involved in the data reception. Each controller shares the same Control, Configuration and
Status registers. Both controllers may interact with each other, especially when the core is configured to
run in copy or copy loop mode.

The core’s behavior is highly dependent on its configuration which is mainly static. The core must first be
configured into one of the operating modes using the SLC Control register. The table hereafter shows the
different Serial Front Panel Data Port running modes that are currently supported and the associated
software configuration.

Serial FDPD Mode Supported TXE RXE CPY FWC MST RFC CRC

Tx Only Mode � 1 0 X 0 X 0 X

Rx Only Mode � 0 1 0 0 0 0 X2

Bidirectional Mode � 1 1 X X X X X

Copy Mode � 1 X3 1 0 X 0 X

Copy Loop Mode �
4 1 X 1 1 X 1 X

Copy Master option � 1 X 1 X 1 X X

Flow Control option �
5 1 1 X 1 X 1 X

CRC option � X X X X X X 1

Note: X means “don’t care”.

Note: Do not attempt to use the core until the Usrclock / Usrclock2 are configured and ready (DCM
locked). Otherwise access to these registers will be neither relevant in reading nor effective in writing.

Note: Copy Loop Mode may be dynamically controlled by the use of the RX_loop port. This feature can
be removed by wiring this input port to ‘1’.

6.20.3.1 TX Controller
The TX Controller is the sequencer used to frame the user data into Serial FPDP Normal Data Fiber
Frames and to send them to the associated RocketIO that performs all the tasks relative to the Physical
layer. It handles the overall framing process (type of the frame, frame length, control characters to be
inserted, flow control and CRC encoding if requested).

The TX Controller is enabled by setting the TXE bit to 1 in the SLC Control register. This action initiates
the physical layer initialization process. It enables the optical transceiver by driving the
Phy_tx_enable control line to 1 and waits for the phy_tx_fault status signal to be negated. The
logical state of that control line could be read by the TXF bit of the SLC Status register.

Then, it sends IDLE characters (TX_INIT_DLY) for approximately 800 ms to enable the receiver’s
physical layer to lock onto the serial data stream. Upon completion of this physical layer initialization, the
TXR status bit of the SLC Status register is asserted. Then, it sends TX_IFRX_VAL Idle Data Fiber
Frames before reaching the “initialized” state (Link_Ready = 1). Upon completion of this link layer
initialization, the TXR status bit of the SLC Status register is asserted.

Both TX_IFRX_VAL and TX_INIT_DLY are generic parameters that are different between the
simulation model and the synthesizable model.

After the TX Controller is started, it maintains link synchronization by continuously sending Idle
characters and Idle Data Fiber Frames until the TX_FIFO memory contains enough data to start the
framing of a user Data Fiber Frame. As long as the TX controller has no user data to frame, it maintains
the link synchronization and the Serial FPDP signals transmission.

2 CRC checking not supported in this core version. If CRC is used by TX, it must be set to 1
3 If RXE is not set the data are not available at the RX side of the link
4 Dynamic Copy Loop Mode available using Rx_Loop mode
5 RX Flow Control and TX Flow Control are independently configurable. RX Flow control is limited to
the RX buffer size and by the user core ability to retrieve enough data.

FDK Reference Manual Page 106 of 165

The Serial FPDP protocol defines 6 status and control signals that may be exchanged between two nodes
of a Serial FPDP link (DIR, PIO1, PIO2, NRDY, TX FIFO Overflow, and STOP/GO). These status and
control signals are embedded within the control Ordered Sets that frames any serial FPDP Fiber frames
(See [RD1] for more details). The STOP/GO signal is internally used by the core for the flow control
management and is not available at the User interface. The core guarantees by design that no TX FIFO
Overflow event will ever occur. The remaining control and status signals are managed by the SLC Signal
register. Local signals (i.e. those defined at the Serial FPDP core level) are driven by the corresponding
bit values (TX_PIO1 , TX_PIO2 , TX_DIR, RX_NRDY) whereas remotely driven signals are available as
read only bits (RX_PIO1, RX_PIO2, RX_DIR, TX_NRDY, RX_FOVF).

Note: Remotely driven signals are also available as dedicated ports in this version of the sFPDP
controller.

The update rate of these control signals depends on the current fiber frames and on the selected running
mode. While the TX Controller has no user data to frame, it periodically inserts Normal Idle Fiber
Frames that still update the values of these control signals (one Normal Idle Fiber Frame after
TX_IDLE_MAX (16) Idle characters). In this case any signal changes are propagated within the next 320
ns. When the TX Controller sends user data, the update rate depends on the size of the Normal Data Fiber
Frame and on the idle time between two consecutives Normal Data Fiber Frames. In this case any signal
changes are propagated within the next 8320 ns.

The user provides the data frame to the core by means of the TX link which is implemented as a subset of
the Local Link Specification (See [RD3] and section 6.20.3.3 TX AND RX LOCAL LINKS). The TX link
data are directly stored in the TX FIFO using the Sysclk clock. The size of the TX buffer is set to 16K
by the TX_BUFFER_SIZE generic parameter. It must be a multiple of 8K due to the memory buffer
layout which is organized with a programmable depth of 4 Block RAM primitives.

The TX Controller can generate two types of Serial Front Panel Data Port frames:

1. Normal Data Fiber Frame

2. Sync Without Data Fiber Frame

The Sync With Data Fiber Frame cannot be generated but is supported and decoded as a valid frame.

Normal Idle FiberFrames are Normal Data FiberFrames with no data.

As soon as data are available in the TX FIFO, the TX controller will try to send them as fast as possible
using Normal Data Fiber Frame with the maximum length. The frame length is 512 data words of 32 bits
unless there is not enough data to complete the frame. If the size of the user frame is greater than one
Normal Data Fiber Frame it is split into multiple Normal Data Fiber Frames. The last one is shorter or
equal to the maximum length of a Normal Data Fiber Frame.

Note: In order to maximize the data bandwidth it is highly recommended to wait for the TX buffer to be
empty (Tx_Empty = ‘1’) and then fill it at the maximum TX link bandwidth. This avoids generating short
incomplete Normal Data Fiber Frame that reduce the link performance by adding the protocol overhead.

If the FWC bit of the SLC Control register is asserted, the TX Controller takes into account the flow
control information issued from the RX controller to pause the data emission. Once the STOP Ordered
Set is decoded on the RX Controller side, the TX Controller interrupts its ongoing transmission by an
early completion of its current Normal Data Fiber Frame. Then it will restart transmission upon the
receipt of a GO Ordered Set.

If the SYF bit of the SLC Control Register is set, the TX Controller will mark the end of each TX Frame
by sending an additional Sync Without Data Fiber Frame after the last Normal Data Fiber Frame. It
might be a convenient way to mark the user frame boundaries at the receiver side.

The user could also request the sending of one Sync Without Data Fiber Frame by writing the FSY bit of
the SLC register at ‘1’. This bit must be set back to ‘0’ in order to enable the next Sync Without Data
Fiber Frame request.

6.20.3.2 RX Controller
The RX Controller is the sequencer used to optionally decode the arriving Data Fiber frames. It handles
the overall decoding process and discards all the protocol overhead characters. It stores the useful data
and the associated status bits in the RX_FIFO memory.

The RX Controller is enabled by writing 1 into the RXE bit of the SLC Control register. This action
initiates the physical layer initialization process. First it waits for the Phy_rx_loss control line to be
negated indicating that the optical transceiver has detected a useful signal. The logical state of that control
line can be read via the RXL bit of the SLC Status register.

FDK Reference Manual Page 107 of 165

Then, it must successfully decode RX_INIT_DLY (0x02000000) IDLE characters to complete the
physical layer which is flagged by the assertion of the RXR status bit of the SLC Status register. Finally it
must correctly decode RX_IFRX_VAL Idle Data Fiber Frames before reaching the “initialized” state
where the RXK status bit is asserted.

Both RX_IFRX_VAL and RX_INIT_DLY are generic parameters that are different between the
simulation model and the synthesizable model.

Note: At this point it is highly recommended to clear all status bits by writing ‘1’ into the RSF bit of the
SLC Control register.

Once enabled, the RX Controller performs continuous checking of the arriving data. It could detect either
a 8B/10B decoding error (DER), a Running Disparity Error (RDE), a loss of synchronization error (SYE)
or a format error (FTE) that would assert the corresponding bit in the SLC Status register. Any error is
memorized until it is explicitly cleared by the writing ‘1’ into the RSF bit of the SLC Control register.

The RX controller’s behavior is closely related to the sFPDP running mode. The Copy modes do not
require that the controller be configured in the Enable state. Data are just decoded and passed through the
RX controller to the TX controller. Data decoding is still performed in order to determine Fiber Frame
boundaries and allow dynamic switching upon the RX_LOOP port. If this port is connected to ‘0’ and the
CPY bit is asserted then the core is running in TX or Bidirectional mode. On the other hand, if this port is
connected to ‘1’, the core is running in Copy Mode. Dynamic switching is always performed once IDLE
characters are sent or received. In order to compensate for clock drift, the RocketIO instance is
configured to add or remove one IDLE character whenever it receives or sends an IDLE character.

The RX controller stores the incoming RX frames in its RX FIFO buffer, in the Bidirectional or RX
modes only. The size of the RX buffer is set to 4K by the RX_BUFFER_SIZE generic parameter. It must
be a multiple of 2K due to the memory buffer layout which is organized with a programmable depth of
one Block RAM primitive.

The RX FIFO should be read using the RX local link clocked by the Sysclk user clock. The
Rx_Dst_rdy_n input port of the RX local link is used to enable the core to output its incoming data.
When this port is driven by the user to ‘0’, the core outputs all the data contained in its RX_FIFO onto a
40-bit bus. Received data are contained on the 32 lowest bits. The 8 upper bits should be discarded. They
are reserved for future use.

If the RFC bit is set to ‘1’ in the SLC Control Register, the RX Controller can request the source to pause
its transmission by asking the TX Controller to send a STOP Ordered Set. This request occurs if at least
one of the two following conditions is satisfied :

o The user asserts Rx_Dst_rdy_n to ’1’.

o The RX FIFO filling exceeds the filling threshold defined by the RX FIFO Threshold
field RXTHR of the SLC Control Register. A value of 0xFF corresponds to a “RX_FIFO
full” threshold whereas a value of 0x80 is the “RX_FIFO half full” threshold.

6.20.3.3 TX and RX Local Links
The TX and RX Local links are implemented as subsets of the LocalLink specification. LocalLink is a
high performance, synchronous, point-to-point interface, designed to serve as user interface to Xilinx’s
system interfaces intellectual property (IP) solutions. The interface defines a set of protocol agnostic
signals that allow the transfer of protocol data units (PDUs).

LocalLink allows the source and destination interfaces to control data flow with a simple handshake
protocol: when the signals Src_rdy_n and Dst_rdy_n are both valid, data is transferred. Source
ready (Src_rdy_n) is asserted by the source, when it is ready to transfer data and is presenting data on
the data bus.

At the start of a PDU transfer, the source asserts start-of-frame (Sof_n) together with source ready
(Src_rdy_n). If the source temporarily runs out of data during the PDU transfer, it can de-assert source
ready.

Destination ready (Dst_rdy_n) is asserted when the destination is ready to accept data. This may be
before or after it has detected the source interface assert source ready (Src_rdy_n). The destination can
de-assert Dst_rdy_n if it temporarily cannot accept data.

A LocalLink frame transfer with source and destination flow control is shown in the figure hereafter.

FDK Reference Manual Page 108 of 165

Transfer starts when the source interface presents data and asserts Sof_n and Src_Rdy_n . The
destination interface is not ready and holds Dst_Rdy_n de-asserted. The source interface presents the
next set of data bytes after the designation asserts Dst_Rdy_n . Next, the source interface de-asserts
Src_Rdy_n , which means it is unable to present any new data at the clock cycle. Transfer starts again
when the source interface asserts Src_Rdy_n and presents the next data set. Transfer ends when the
source interface presents data and asserts Eof_n and Src_Rdy_n and when the destination is ready to
accept these data. Further details can be found in [RD3].

The present sFPDP core implementation does not use the remainder field and thus assumes that when
data are valid the whole data bus width carries valid data. It implies that the TX frame length granularity
is 128 bits or 16 bytes and that the RX frame length granularity is 32 bits (4 bytes).

Channelization, parity, source, and destination discontinuation options are not implemented in order to
keep the implementation simple and obtain a user-friendly interface.

6.20.3.4 Clocking
The sFPDP core requires the 5 clock domains IB_Clk , Sysclk , Refclk , Usrclk, and Usrclk2 .

IB_Clk is used for the Internal Bus interface. Sysclk is used for data transfer to the TX FIFO and from
the RX FIFO.

Refclk is used by the RocketIO MGT primitive to generate its serial clock at the desired bit rate (up to
2.5GHz)

Usrclk and Usrclk2 are used by the RocketIO MGT primitive and by the sFPDP core to perform all
controls related to TX and RX controllers. Usrclk and Usrclk2 have both a phase and a frequency
relationship that is derived from the way the RocketIO MGT primitive is configured (especially the width
of the data path which is set to 32 bits. See [RD2] for more details).

The Refclk , Usrclk, and Usrclk2 frequencies are dependent on the serial link bit rate. Although
this core was tested and qualified for a 125 MHz reference clock leading to a 2.5 Gbit/s bit rate, it is
possible to use other bit rate values. The reference clock is fed by an external dedicated clocking chip
which provides a low jitter LVDS reference clock. The frequency of that reference clock must be 1/20th of
the desired bit rate. It is set using a dedicated attribute named oldTxbitrate that can take the values 2.5G,
2.125G or 1.063G, leading to bit rates of 2.5 Gbit/s, 2.125 Gbit/s or 1.063575 Gbit/s.

6.20.3.5 Throughput Monitoring
The sFPDP core implements a convenient way to monitor the effective data throughput of the TX
controller. After the TX Controller is enabled, it counts during 65536 Usrclk2 periods (roughly during
more than 1ms) the number of periods it has spent sending user data. When this counting period is
elapsed, it stores the counting result into the TXTGH field of the SLC Status register and restarts a new
counting cycle. Thus, the effective data throughput can be computed as follows

65536

TXTGH
TXTX BandwidthThroughput=

TXThroughput is the effective user data throughput and TXBandwidth the raw sFPDP core TX Bandwidth.

FDK Reference Manual Page 109 of 165

[]sMByte
Trefclk

TXBandwidth /
2=

Trefclk is the period, expressed in ns, of the reference clock used for the sFPDP core.

6.20.3.6 Generic Parameters
Although these parameters should not be modified by the developer, the table hereafter presents the
generic values which are used for both simulation and synthesizable models of this sFPDP core version.

Parameter Simulation Synthesis Comments

TX_INIT_DLY x”00000100” x”08000000” Number of IDLE Words sent for Link
Initialization

TX_IFRX_VAL x”0010” x”2000” Number of IDLE frames sent for Link
Initialization

RX_FIFO_SIZE 16384 16384 Size [Bytes] of the TX Buffer

TX_FIFO_DPH 9 9 Memory Depth of the TX Buffer

TX_IDLE_MAX x“0F” x“0F” Max number of IDLE characters before
IDLE Frame Insertion

TX_FIFO_THR “000000001” “000000001” Defines the number of words before
starting a Data Frame

PHY_INIT “00001F” “3D0900” Defines the start up time for PAROLI
transceivers

RX_INIT_DLY x”00000080” x”02000000” Number of IDLE words to be correctly
received for Link Initialization

RX_IFRX_VAL x”0008” x”1000” Number of IDLE frames to be correctly
received for Link Initialization

RX_BUFFER_SIZE 4093 4096 Size [Bytes] of the RX Buffer

RX_PDUI_TMO x“03” x“03” Number of PDU Idle before a frame is
aborted on the RX side

6.20.4 Register
 SLC Registers refers to a set of three registers, which are embedded within each Serial FPDP Core. The
address of these registers is defined by a base address (which may be mapped anywhere into the
Customer-free address space) and an offset. The address offset is frozen within the core whereas the base
address is defined by the SLC_BASE_ADD port value.

���� Note: It is up to the user to carefully assign the SLC_BASE_Add value so that there will not be any
address overlaps or other conflicts.

6.20.4.1 SLC Control Register
The SLC Control register defines the configuration and running modes of the Serial Front Panel Data Port
Controller. It should not be accessed until the associated Usrclk /Usrclk2 clocks are available and
stable.

Register Space Register Number Register Address

Customer User_Defined(*) User_Defined(*)

(*) Register Address = SLC_Base_Add + 0x00

31 30 29..26 25 24 23..16

RSF RRX Reserved RXP TXP RX FIFO Threshold

15..14 13 12 11..9 8

Reserved FSY SYF Reserved RFC

FDK Reference Manual Page 110 of 165

7 6 5..4 3 2 1 0

CRC MST Reserved FWC CPY RXE TXE

[0] TXE RW TX Controller Enable. ‘0’: Disabled , ‘1’: Enabled

[1] RXE RW RX Controller Enable. ‘0’: Disabled , ‘1’: Enabled

[2] CPY RW TX Copy Mode. TXE must be asserted. ‘0’: Disabled , ‘1’: Enabled

[3] FWC RW TX Flow Control. TXE and RXE must be asserted.
0’: Disabled, ‘1’: Enabled

[5..4] Reserved RW Reserved: Do not use these bits in either reading or writing.

[6] MST RW TX Copy Master Mode. TXE and CPY must be asserted.
‘0’: Disabled , ‘1’: Enabled

[7] CRC RW CRC Encoding Enable. ‘0’: Disabled, ‘1’: Enabled

[8] RFC RW RX Flow Control. TXE and RXE must be asserted.
‘0 : Disabled , ‘1’: Enabled

[11.. 9] Reserved RW Reserved: Do not use these bits in either reading or writing

[12] SYF RW Mark TX Frame with SYNC without data.
‘0 : Disabled, ‘1’: Enabled

[13] FSY W Send a SYNC without data frame. ‘0’: Disabled, ‘1’: Enabled

[23..16] RXTHR RW RX FIFO Threshold for Flow Control

[24] TXP RW TX Polarity. ‘0’: Default Polarity, ‘1’: Invert Polarity

[25] RXP RW RX Polarity. ‘0’: Default Polarity, ‘1’: Invert Polarity

[29-26] Debug RW Reserved: Do not use these bits in either reading or writing.

[30] RRX W Reset RX Controller. ’0 : Reset Flags, ’0’: Default

[31] RSF RW Reset Status Flags. ’1’: Reset Flags, ’0’: Default

6.20.4.2 SLC Status Register
Register Space Register Number Register Address

Customer User Defined (*) User Defined (*)

(*) Register Address = SLC_Base_Add + 0x04

31..16

TXTGH

15 14 13 12 11 10 9 8

RES CRE RDE DER FTE SYE - EER

7 6 5 4 3 2 1 0

- RXK - TXK RXR TXR RXL TXF

[0] TXF R TX Fault (Optical Transceiver Not Ready or Faulty).

[1] RXL R RX Loss of Signal (Optical Transceiver Not Ready or Faulty).

[2] TXR R TX Physical Layer Ready. ‘0’: Not initialized or faulty, ‘1’: Ready

[3] RXR R RX Physical Layer Ready. ‘0’: Not initialized or faulty, ‘1’: Ready

[4] TXK R TX Link Layer Ready. ‘0’: Not initialized or faulty, ‘1’: Ready

[6] RXK R RX Link Layer Ready. ‘0’: Not initialized or faulty, ‘1’: Ready

[8] EER RW TX Encoding Error. ‘0’: No error, ‘1’: Error Detected

[10] SYE RW RX Loss of Sync Error. ‘0’: No error, ‘1’: Error Detected

[11] FTE RW RX Format Error. ‘0’: No error, ‘1’: Error Detected

FDK Reference Manual Page 111 of 165

[12] DER RW RX Data Encoding Error. ‘0’: No error, ‘1’: Error Detected

[13] RDE RW RX Running Disparity Error. ‘0’: No error, ‘1’: Error Detected

[14] CRE RW RX CRC Checking Error if relevant. ‘0’: No error, ‘1’: Error Detected

[15] RES RW Reserved

[31..16] TXTGH R TX Effective Throughput (Relevant only if TX is Enabled)

6.20.4.3 SLC Signal Register

Register Space Register Number Register Address

Customer User Defined (*) User Defined (*)

(*) Register Address = SLC_Base_Add + 0x08

31..9 8

- RX_FOVF

7 6 5 4 3 2 1 0

RX_NRDY RX_DIR RX_PIO2 RX_PIO1 TX_NRDY TX_DIR TX_PIO2 TX_PIO1

[0] TX_PIO1 RW Value of the PIO1 signal to be transmitted over the Serial Link

[1] TX_PIO2 RW Value of the PIO2 signal to be transmitted over the Serial Link

[2] TX_DIR RW Value of the DIR signal to be transmitted over the Serial Link

[3] TX_NRDY RO Value of the NRDY signal received from the Serial Link

[4] RX_PIO1 RO Value of the PIO1 signal received from the Serial Link

[5] RX_PIO2 RO Value of the PIO2 signal received from the Serial Link

[6] RX_DIR RO Value of the DIRY signal received from the Serial Link

[7] RX_NRDY RW Value of the NRDY signal to be transmitted over the Serial
Link

[8] RX_FOVF RO Value of the RX_FOVF signal received from the Serial Link

6.20.5 Instantiation
This core is not instantiated in the base design example.

The TX_Data_ IF signals (refer to the Logic Symbol groups) should be connected to the User Core that is
expected to transmit data packets.

The RX_Data_ IF signals (refer to the Logic Symbol groups) should be connected to the User Core that is
expected to receive data packets. Even if the RX LocalLink is not used, it is highly recommended to wire
the RX_DST_RDY_N port to ‘0’.

The PIO_IF could be left open with the exception of specific applications that need to control firmware
operation by means of Serial FPDP Control Signals. These status signals are also available in the SLC
Signal register.

The IB_IF signals should be connected to the Internal Bus.

The Clocks signals should be carefully wired depending on the location of the associated RocketIO MGT
primitives and on the physical media the user wants to address (See Constraints sections).

Miscellaneous signals could be used for the User core to control the link availability for the TX path.

RocketIO IF signals are directly connected to the pad of the RocketIO MGT instance. No additional
OBUF instantiation are required for those pins (TXP, TXN, RXP, and RXN).

Transceiver Control Signals only require the addition of an external pad buffer. Although there may be
several ways inserting I/O buffers, the explicit IOBUF instantiation is the recommended solution.

Generic parameters are not available in this core versionsare frozen at the value described in the dedicated
generic section.

FDK Reference Manual Page 112 of 165

6.20.6 Constraints
• Clock Constraint

The sFPDP core assumes an IB_Clk frequency of 33 MHz, a Sysclk frequency of 66 MHz, Refclk
and Usrclk frequencies of 125 MHz, and a Usrclk2 frequency of 62.5 MHz. These constraints must
be defined for the clock manager core and are automatically propagated throughout the whole design.

Refclk must be allocated to a dedicated routing resource that provides a low jitter path from a clock
buffer directly to the RocketIO MGT primitive. It must be directly wired without any BUFG primitive.
The “Place and Route” tool automatically detects that connection and routes it accordingly.

Depending on the instantiated RocketIO MGT primitive, the user should connect the Usrclk /
Usrclk2 and Refclk either to Usrclka/Usrclk2a and RefclkA ports of the clock manager core
or on the Usrclkb /Usrclk2b and RefclkB .

• Input/Output Constraints

RocketIO
instances

Transceiver Clocking
Edge

TXP TXN RXP RXN

GT_X0Y1 SFP ODLA RefclkA A35 A36 A34 A33

GT_X2Y1 SFP ODLB RefclkA A31 A32 A30 A29

GT_X6Y1 PAROLI_L0 RefclkA A14 A15 A13 A12

GT_X7Y1 PAROLI_L1 RefclkA A10 A11 A9 A8

GT_X9Y1 PAROLI_L2 RefclkA A6 A7 A5 A4

GT_X5Y1 PAROLI_L3 RefclkA A18 A19 A17 A16

GT_X4Y1 PAROLI_L4 RefclkA A23 A24 A22 A21

GT_X3Y1 PAROLI_L5 RefclkA A27 A28 A26 A25

GT_X0Y0 PAROLI_L6 RefclkB AW35 AW36 AW34 AW33

GT_X2Y0 PAROLI_L7 RefclkB AW31 AW32 AW30 AW29

GT_X3Y0 PAROLI_L8 RefclkB AW27 AW28 AW26 AW25

GT_X6Y0 PAROLI_L9 RefclkB AW14 AW15 AW13 AW12

GT_X5Y0 PAROLI_L10 RefclkB AW18 AW19 AW17 AW16

GT_X4Y0 PAROLI_L11 RefclkB AW23 AW24 AW22 AW21

The sFPDP core contains one output (PHY_TX_ENABLE) and two inputs (PHY_TX_FAULT,
PHY_RX_LOSS) that can be used to control directly a SFP optical transceiver. PAROLI transceivers
should be controlled by an additional component that directly interfaces with these ports.

Please note that PHY_TX_ENABLE must be first inverted before being connected to the external pad.

6.20.7 Resource Utilization
Resource count and relative usage in the target Xilinx Virtex II Pro – XC2VP70-6FF1517:

Resources Used Available Utilization
Function Generators 2722 66176 4.11%

CLB Slices 1361 33088 4.11 %

Dffs or Latches 2001 69068 2.90 %

Block RAMs 10 328 3.05 %

Note: Please note that the figures above are for an optimized version of the core that does not implement
CRC Decoding on the RX path.

6.20.8 Version History
Date FDK Version Comments

July 05 Beta 3 Initial Version

March 06 Beta 7 Description updated.

FDK Reference Manual Page 113 of 165

6.21 DDR Memory Interface
The P512MB Memory Option provides two independent DDR SDRAM (“Dual-Data Rate, Synchronous
Dynamic Random Access Memory”) memory banks that are accessed through two independent
interfaces: DDRA and DDRB. Each memory bank is defined by four DDR SDRAM devices each with a
16 bits wide data bus. Thus the data bus of each bank is 64 bits wide. The DDR SDRAM clock runs at
166 MHz and provides a usable bandwidth of 2 GB/s.

The size of each DDR SDRAM device is 512 Mbits, leading to a total of 256 MB per bank.

6.21.1 Functional Description
After a bit file is loaded, the DDR SDRAM memories must first be initialized. Once the initialization is
completed, the access to a DDR SDRAM bank can be performed either from the Internal Bus (for access
to/from the PCI bus) or from the User Port.

The User Port and the Internal Bus port of a bank cannot be simultaneously active. The active port can be
set independently for each bank. It is not possible to simultaneously access both memory banks through
the Internal Bus.

The User Port is optimized for high throughput transfers using Burst mode accesses. Single access is also
available but will be less efficient than single access to the Dual Port SRAM. The DDR memory interface
core contains multiple read/write buffers in order to sustain the 2 GB/s throughput. The buffer handling is
automatically performed by the core. In the same way the DDR memory refresh cycles are automatically
managed by the core.

The Internal Bus port enables DMA readout through the PCI backplane at up to 132 MB/s.

The DDR memory interface core includes a self-test. This self-test covers the entire memory depth and is
performed at full speed with different test patterns. This test can be run through the AcqirisAnalyzer
application if the base design is loaded in the FPGA.

6.21.1.1 Initialization
After the bit file is loaded the DDR memory initialization begins automatically. It will end several
microseconds after the user program releases the SGReset_n bit of the control register of the core
acq_ctr_reg . When the initialization is completed, the Init_DDR_Done bit of the DDRStatus
register is set to ‘1’. The user program should wait for it before attempting to access the DDR memory.

DDR SDRAM
Register and

Access Interface

DDR SDRAM
controller A

DDR SDRAM
chip #1

DDR SDRAM
chip #2

DDR SDRAM
chip #3

DDR SDRAM
chip #4

DDR SDRAM
chip #1

DDR SDRAM
chip #2

DDR SDRAM
chip #3

DDR SDRAM
chip #4

DDR SDRAM
controller B

User Port A

Internal Bus

User Port B

DCM Phase Shift

FDK Reference Manual Page 114 of 165

6.21.1.2 Minimum Number of Transfers
The core ddr_interface configures the memory devices to use burst4 transfers. This means that a
minimum of four words of 64 bits are transferred to or from the memory when accessing the memory. It
therefore requires a minimum of two transfers on the User Port (2 x 128 bits) and a minimum of 8
transfers on the Internal Bus port (8 x 32 bits).

6.21.1.3 Read Access Time
The core ddr_interface always reads the memory starting at an address aligned to 0 (modulo 128)
and reads entire buffer blocks of 128 x 128 bits, even if the start address is not aligned to 0. The address
always refers to words of 128 bits. The time to access the first data is then directly dependent on its
alignment in the read buffer. As soon as the required data is available, the user is informed with a data
valid signal.

6.21.1.4 Port Selection
The bit LB_Get_Ctrl of the DDRControl register selects which port will be the active port. Of course
the selection must be done prior to accessing the memory bank.

6.21.1.5 User Port
Each User Port has independent clock, data, address, read / write control ports. The data bus width is 128
bits. The user can connect the clock to any required frequency up to 133 MHz as long as the write rate
does not exceed the maximum of 2 GB/s, or 128 bits at 125 MHz. This average value must not be
exceeded when completely filling a single buffer of 128 x 128 bits. For example, if 128 words of 128 bits
were written at a rate of 133 MHz, there should be no attempt to write data for at least 8 clock cycles.

The User Port provides two kinds of accesses:

Single Access: It corresponds to a single memory access (burst4) which always results into a double
transfer at the User Port (2 x 128 bits).

Burst Access: It corresponds to n consecutive memory accesses (burst4) which always results into 2n
transfers at the User Port (n x 2 x 128 bits).

Any User Port access begins by activating the signal UPx_ADS for one clock cycle and ends by
activating the signal UPx_End for one clock cycle. The transfer direction, type, and start address are
sampled when UPx_ADS is active.

NOTE: The UPX_Address address is defined on a basis of 128-bit words, which differs from the
internal bus address.

The start address on the UPX_Address bus must always be 0 modulo 2 (i.e. be a multiple of 2).

In the case of write access, the signal UPx_WriteEn should be activated when valid data are present on
the UPx_DataW bus.

In the case of read access, the signal UPx_DataR_Valid is activated when data are available. The user
should then activate the signal UPx_DataR_En to get the data available on UPx_DataR with a latency
of one clock.

6.21.1.6 Internal Bus Port
The Internal Bus port provides access to the control register, status register, and to the memory. Access to
the register uses the direct access mode of the Local Bus interface. Access to the memories uses indirect
addressing with DMA capability for fast readout.

Each memory bank is seen through the Internal Bus as a memory space of 64M words of 32 bits.

The start address is the content of the indirect address register of the Local Bus interface.
NOTE: The address is in bytes, which differs from the user port address.
Valid address are (0 + n * 4), where n [0..64M] is the targeted 32-bit word.

Reading the DDR memory can start at any valid address.

The DDR core writes data to the memory with a minimum burst of four 64-bit words. Therefore the DDR
core accumulates eight 32-bit words into an intermediate buffer of 256 bits prior to writing. In case an
access ends before 8 words are accumulated, the last intermediate buffer remains in the DDR core and is
not written to the memory. Any write access to an address 0x0 modulo 0x20 (8x32 bits) overwrites the
intermediate buffer even if it was previously partially filled.

FDK Reference Manual Page 115 of 165

6.21.1.7 Internal Bus Port Address versus User Port Address

Internal Bus port
address [bytes]

User Port
Address[128 bits]

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C

0x0, Data(bits 31 to 0)
0x0, Data(bits 63 to 32)
0x0, Data(bits 95 to 64)
0x0, Data(bits 127 to 96)
0x1, Data(bits 31 to 0)
0x1, Data(bits 63 to 32)
0x1, Data(bits 95 to 64)
0x1, Data(bits 127 to 96)

6.21.1.8 DDR SDRAM Clock Structure
The clock speed of the DDR SDRAM devices is 166 MHz. The DDR SDRAM controller uses three
different 166 MHz clocks generated from 3 different DCMs to ensure the DDR SDRAM device timing.

- SYS_DDR_CLK: is used to generate the DDR command and the DDR data output.

- STB_CLK: generates the DDR SDRAM clock and the DQS strobes.

- SMP_CLK: is internally used, to set the sampling point of the DDR read data properly

All these clocks are shared among the two DDR-SDRAM controllers.

The STB_CLK and SMP_CLK can be individually shifted. This allows exact matching of the timing of the
DDR SDRAM devices to compensate the board layout delays.

The STB_CLK can be shifted by using the phase shift option DCM_EXT_PS. The SMP_CLK can be
shifted by using the phase shift option DCM_SMP_PS. The phase shift affects always both DDR SDRAM
controllers. It can’t be set individually.

NOTE: The phase shift is fixed by design. Developers should not modify the default value.

6.21.1.9 Self-Test
The DDR memory interface core also implements a self-test that is used in production for testing the
DDR-SDRAM memory devices. The goal of this test is to fill the whole memory with four types of
patterns: all '0', all '1', '0' � '1' � '0', and ramps on 16 bits (for 160 bits, 10 ramps of 16 bits) and then to
read back the memory to check the proper behavior.

The test is started by writing the bit Start_Self_Test in the DDRTestControl register. This test can
be run in different modes. The simplest mode performs the entire test and counts the number of errors.
This mode is selected by setting the bit Self_Test_Autocont in the DDRTestControl register before
running the test. When the test is complete, the bit DDR_Ready of the DDRStatus register is set to ‘1’.
The bit Self_Test_Ok of the DDRTestStatus register is ‘1’ if the test was successful, otherwise it is
‘0’.

NOTE: Developers need not know more details. The tests can be executed by running Acqiris
Analyzer with the Base Design firmware.

6.21.2 Instantiation
The DDR memory interface core is already instantiated in the base design example. It is always
associated with its companion, ddr_interface_buffer , which handles the Xilinx IO primitives.

6.21.3 Port Description

Signal Size Type Short Description

INTERNAL BUS

FDK Reference Manual Page 116 of 165

Signal Size Type Short Description

IB_Customer
IB_Dirsel
IB_Write
IB_Rdy
IB_TimeO
IB_Addr
IB_DataW
IB_DataR
IB_IndirCtr
IB_Valid
IB_End

1
1
1
1
1
32
32
32
1
1
1

In
In
In
Out
In
In
In
Out
In
In
In

Must be connected to the IB-BUS signal with the same name. For
details please refer to the description of the IB-BUS.

IB_Clk 1 In Internal Bus clock, must be connected to lbclkg , the Local Bus
clock.

Reset 1 In Reset, must be connected to the general reset Dreset .

USER Port: x=A or B stand for User Port A or User Port B

UP_Clk 1 In Memory port clock. It can be set to any frequency up to 125 MHz.
Up to 133 MHz is also allowed, but only with the maximum
sampling rate of 2 GS/s

UPx_ADS 2x1 In Address strobe. When ‘1’, the value on UPx_Address is used. It
is stored in the auto increment address register and the access will
be started.

UPx_Write 2x1 In Transfer direction: ‘1’ for writing to the memory, ‘0’ for reading.

UPx_Address 2x26 In Start Address. The address value is in units of 128-bit words.

UPx_Burst 2x1 In It must be set to ‘1’ for burst transfer, ‘0’ for single transfer.

UPx_End 2x1 In Each access must terminate by setting UPx_End to ‘1’ for one
clock period.

UPx_DataW 2x127 In Bus for data write

UPx_WriteEn 2x1 In DataW write enable

UPx_DataR 2x127 Out Bus for data read

UPx_DataR_Valid 2x1 Out Data read valid signal. ‘1’ indicates that the controller has valid
data in the read buffer.

UPx_DataR_En 2x1 In Data read request. Read a next valid data from the read buffer. The
user must first wait for UPx_DataR_Valid .

OUTPUT to DDR SDRAM MEMORY: x=A or B stand for Por t A or Port B

DDRx_CK 2x1 Out Portx DDR SDRAM Clock Output

DDRx_CK_N 2x1 Out Portx DDR SDRAM negative Clock Output

DDRx_CKE 2x1 Out Portx DDR SDRAM Clock enable (is fixed ‘1’)

DDRx_ADDR 2x13 Out Portx DDR SDRAM Address

DDRx_BA 2x2 Out Portx DDR SDRAM Bank Address

DDRx_CS_N 2x1 Out Portx DDR SDRAM Chip Select

DDRx_WE_N 2x1 Out Portx DDR SDRAM Write Enable

DDRx_RAS_N 2x1 Out Portx DDR SDRAM Row Address Strobe

DDRx_CAS_N 2x1 Out Portx DDR SDRAM Column Address Strobe

DDRx_LDM 2x1 Out Portx DDR SDRAM Lower Data Mask (is fixed to ‘0’)

DDRx_UDM 2x1 Out Portx DDR SDRAM Upper Data Mask

DDRx_DQ 2x127 InOut Portx DDR SDRAM bidirectional Data Bus

DDRx_LDQS 2x4 Out Portx DDR SDRAM Lower Data Strobe

DDRx_UDQS 2x4 Out Portx DDR SDRAM Upper Data Strobe

DDRx_CS_N_RDBACK 2x1 In Portx DDR SDRAM Chip Select Readback Signal

FDK Reference Manual Page 117 of 165

Signal Size Type Short Description

DDRx_WE_N_RDBACK 2x1 In Portx DDR SDRAM Write Enable Readback Signal

DDRx_RAS_N_RDBACK 2x1 In Portx DDR SDRAM Row Address Strobe Readback Signal

DDRx_CAS_N_RDBACK 2x1 In Portx DDR SDRAM Column Address Strobe Readback Signal

6.21.4 User Port Timing Diagrams: Burst write and Single write
Note1: UP_ADS initiates the transfer. UP_Write , UP_Burst, and UP_Address must be valid

simultaneously to UP_ADS.

Note2: The start address UP_Address must be 0 modulo 2.

Note3: UP_WriteEn enables the transfer of the actual value of UP_DataW.

Note4: The average writing rate must not exceed 2 GB/s for longer than 128 transfers.

Note5: The number of transfers in a burst is not limited.

Note6: The number of transfers in a burst must be an even value.

Note7: UP_End must be ‘1’ for one clock cycle in order to terminate the transfer.

Note8: Any sequence of read or write, burst or single must be separated by at least 3 clock cycles.

6.21.5 User Port Timing Diagrams: Burst read

Note1: UP_ADS initiates the transfer. UP_Write , UP_Burst, and UP_Address must be valid
simultaneously with UP_ADS.

Note2: The access time depends on the alignment of the start address UP_Address with respect to the
read buffer.

Note3: The start address UP_Address must be 0 modulo 2.

FDK Reference Manual Page 118 of 165

Note4: UP_DataR_En enables reading. It must be activated only after valid data are present in the read
buffer of the DDR core. This is true when the signal UP_DataR_Valid becomes ‘1’. The data
will be present on the signal UP_DataR with a latency of one clock cycle.

Note5: The average reading rate must not exceed 2 GB/s for longer than 128 transfers.

Note6: The number of transfers in a burst is not limited.

Note7: UP_End must be ‘1’ for one clock cycle in order to terminate the transfer.

Note8: Any sequence of read or write, burst or single must be separated by at least 3 clock cycles.

6.21.6 User Port Timing Diagrams: Single Read

Note1: UP_ADS initiates the transfer. UP_Write , UP_Burst, and UP_Address must be valid
simultaneously with UP_ADS.

Note2: The access time depends on the alignment of the start address UP_Address with respect to the
read buffer.

Note3: The start address UP_Address must be 0 modulo 2.

Note4: UP_DataR_En enables reading. It must be activated only after valid data are present in the read
buffer of the DDR core. This is true when the signal UP_DataR_Valid becomes ‘1’. The data
will be present on the signal UP_DataR with a latency of one clock cycle.

Note5: UP_End must be ‘1’ for one clock cycle in order to terminate the transfer.

Note6: Any sequence of read or write, burst or single must be separated by at least 3 clock cycles.

6.21.7 Registers
Each register exists both for the DDR BankA and the DDR BankB. The first value in the column
“Register Number” and in the column “Register Address” is for the register of BankA, the second value is
for the register of BankB.

Each bit has a different meaning depending on the access direction.

6.21.7.1 DDRControl
Register Space Register Number Register Address

Customer 44/52 (*) 0x22B0/0x22D0 (*)

Note (*) : the two values refer to the register of BankA and BankB (A/B)

FDK Reference Manual Page 119 of 165

31..9 8

-- LB_Get_Ctrl

7 6 5..4 3..2 1 0

-- DDR_SDRAM_Sim DDR_SDRAM_Size -- Clr_Overflow_Fla g --

[1] Clr_Overflow_Flag W Clears the DDR write buffer overflow flag. Overflows
can occur when the write speed is more than 2 GB/s.

[5..4] DDR_SDRAM_Size RW It must be set to ‘0’: 256 MB (32M x 64 bits)

[6] DDR_SDRAM_Sim RW Select Simulation mode:
- in order to reduce the simulation time
- to perform automatic tests on reduced memory size

 0 Normal operation

 1 Simulation

[8] LB_Get_Ctrl RW Select the port for subsequent DRAM memory access

 0 User port (UPx port)

 1 Internal bus port (indirect address)

6.21.7.2 DDRStatus
Register Space Register Number Register Address

Customer 44/52 (*) 0x22B0/0x22D0 (*)

Note (*) : the two values refer to the register of BankA and BankB (A/B)

31..16 15..13 12

-- -- Stop_Rd_Flag

11..9 8 7 6 5..4

 LB_Get_Ctrl -- DDR_SDRAM_Sim DDR_SDRAM_Size

3 2 1 0

-- Wr_Buffer_Overrun DDR_Ready Init_DDR_Done

[0] Init_DDR_Done R After power up the DDR SDRAM devices have to be
initialized first. Init_DDR_Done goes to ‘1’ as soon as
the initialization process is finished

[1] DDR_Ready R Self-test status.

 0 State after power up

 1 Self-test process is finished

[2] Wr_Buffer_Overrun R Write Buffer Overrun. Overruns can occur when the data
write speed is more than 2 GB/s

[5..4] DDR_SDRAM_Size RW DRAM memory size

 01 256 MB (32M x 64 bits)

 others Not available

[6] DDR_SDRAM_Sim RW Select Simulation mode:
- in order to reduce the simulation time
- to perform automatic tests on reduced memory size

 0 Normal operation.

 1 Simulation.

[8] LB_Get_Ctrl RW Select port for subsequent DRAM memory access

 0 User port (UPx port)

FDK Reference Manual Page 120 of 165

 1 Internal bus port (indirect address)

[12] Stop_Rd_Flag R Status for read access:

 0 A read access is active.

 1 A read access is stopped. The DDR core is ready
for another access

6.21.7.3 DDRTestControl
Register Space Register Number Register Address

Customer 45/53 (*) 0x22B4/0x22D4 (*)

Note (*) : the two values refer to the register of BankA and BankB (A/B)

31 30-8 7..4

Self_Test_Short Self_Test_NB_Active

3 2 1 0

Self_Test_Autocont Self_Test_Stop Self_Test_Continu e Start_Self_Test

[0] Start_Self_Test W Writing a ‘1’ starts a self-test

[1] Self_Test_
Continue

W Writing a ‘1’ continues a self-test. In case of a DDR
SDRAM access error detected by the self-test process, the
test is paused and can be continued by this bit.

[2] Self_Test_Stop W Writing a ‘1’ stops a self-test and the DDR SDRAM
controller goes into normal operation mode. In case of a
DDR SDRAM access error detected by the self-test
process, the test is paused and can be stopped by this bit.

[3] Self_Test_
Autocont

W Writing a ‘1’ puts the DDR controller into auto-continue
mode. In auto-continue mode, the self-tests are executed
on the whole memory. They are not paused in case of an
access error. At the end of a self-test, the number of errors
is written in the self-test error counter register (50/58).

[7..4] Self_Test_NB_
Active

W Test pattern number (multiple selections possible). The
pattern number will be processed one after another.

 Bit4 Data pattern ‘0’

 Bit5 Data pattern ‘1’

 Bit6 Data pattern ‘0’ – ‘1’ – ‘0’ – ‘1’ –

 Bit7 Data pattern ramp

[31] Self_Test_Short W Writing a ‘1’ force the self-test to be executed on 64K
memory position word instead of on the whole memory.

6.21.7.4
DDRTestStatus

Register Space Register Number Register Address

Customer 45/53 (*) 0x22B4/0x22D4 (*)

Note (*) : the two values refer to the register of BankA and BankB (A/B)

31 30 29 28

-- Self_Test_Timeout Self_Test_Busy Self_Test_Ok

27..25 24..0

-- Self_Test_Addr_KO

[24..0] Self_Test_Addr_KO R Address location in the DDR SDRAM

FDK Reference Manual Page 121 of 165

memory where an access mismatch was
found. Check this register when
Self_Test_Busy goes to ‘0’ and
Self_Test_Ok indicates ‘0’.

[28] Self_Test_Ok R Self-test pass / fail status

 0 Self-test was not successful

 1 Self-test was successful

[29] Self_Test_Busy R Self-test busy status

 0 Self-test is finished. When finished,
check Self_Test_Ok .

 1 Indicates a running self-test

[30] Self_Test_Timeout R When equal to ’1’, this bit indicates that the
current self-test did not terminate.

This is normally due to an incorrect phase
shift value for the DCM Ext or the DCM
Smp.

When internal timeout occurs, the
Self_Test_Ok and Self_Test_Busy
bits are deactivated

6.21.7.5 DDRTestData0
Register Space Register Number Register Address

Customer 46/54 (*) 0x22B8/0x22D8 (*)

Note (*) : the two values refer to the register of BankA and BankB (A/B)

31..0

Self_Test_Data_KO_1(31:0)

[31..0] Self_Test_Data_KO_1 R Data bits (31:0) at the DDR SDRAM address location
where a mismatch was found

6.21.7.6 DDRTestData1
Register Space Register Number Register Address

Customer 47/55 (*) 0x22BC/0x22DC (*)

Note (*) : the two values refer to the register of BankA and BankB (A/B)

31..0

Self_Test_Data_KO_2 (63:32)

[31..0] Self_Test_Data_KO_2 R Data bits (63:32) at the DDR SDRAM address
location where a mismatch was found

6.21.7.7 DDRTestData2
Register Space Register Number Register Address

Customer 48/56 (*) 0x22C0/0x22E0 (*)

Note (*) : the two values refer to the register of BankA and BankB (A/B)

31..0

FDK Reference Manual Page 122 of 165

Self_Test_Data_KO_3(95:64)

[31..0] Self_Test_Data_KO_3 R Data bits (95:64) at the DDR SDRAM address
location where a mismatch was found

6.21.7.8 DDRTestData3
Register Space Register Number Register Address

Customer 49/57 (*) 0x22C4/0x22E4 (*)

Note (*) : the two values refer to the register of BankA and BankB (A/B)

31..0

Self_Test_Data_KO_4(127:96)

[31..0] Self_Test_Data_KO_4 R Data bits (127:96) at the DDR SDRAM address
location where a mismatch was found

6.21.7.9 DDRTestCounter
Register Space Register Number Register Address

Customer 50/58 (*) 0x22C8/0x22E8 (*)

Note (*) : the two values refer to the register of BankA and BankB (A/B)

31..25 24..0

-- Self_Test_Error_Counter

[24-0] Self_Test_Error_Counter R In auto-continue mode, these bits
indicate the number of errors during
the last self-test

6.21.7.10 DDRClockControl
Developers should not modify nor write to this register. The proper behavior of the DDR memory
could be altered. This register is common for both DDR Banks.

Register Space Register Number Register Address

Customer 60 0x22F0

31..26 25 24 23..16

-- DCM_Smp_Change_Start DCM_Smp_PS_IncDec DCM_Smp_P S_Offset

15..10 9 8 7..0

-- DCM_Ext_Change_Start DCM_Ext_PS_IncDec DCM_Ext_P S_Offset

[7..0] DCM_Ext_PS_Offset W Phase shift offset of the DCM Ext
Phase shift width is: tclk_ext * (DCM phase shift /
256)

[8] DCM_Ext_PS_IncDec W Phase shift is decremented (‘0’) or incremented (‘1’)
by the value of DCM_Ext_PS_Offset

[9] DCM_Ext_Change_Start W Start DCM Ext Phase shift

 0 no action

 1 Phase shift process of the DCM Ext is started

[23..16] DCM_Smp_PS_Offset W Phase shift offset of the DCM Smp
Phase shift width is: tclk_smp * (DCM phase shift /
256)

[24] DCM_Smp_PS_IncDec W Phase shift is decremented (‘0’) or incremented (‘1’)
by the value of DCM_Smp_PS_Offset

FDK Reference Manual Page 123 of 165

[25] DCM_Smp_Change_Start W Start DCM Smp Phase shift

 0 no action

 1 Phase shift process of the DCM Smp is started

6.21.7.11 DDRClockStatus
Register Space Register Number Register Address

Customer 60 0x22F0

31..24 23..18 17 16

DCM_Smp_Done_cnt DCM_Smp_Overflow DCM_Smp_Busy

15..8 7..2 1 0

DCM_Ext_Done_cnt -- DCM_Ext_Overflow DCM_Ext_Busy

[0] DCM_Ext_Busy R 0 Phase shift of DCM Ext is idle or finished

 1 Phase shift of DCM Ext is in progress

[1] DCM_Ext_Overflow R When equal to ‘1’, this bit indicates the overflow of
the DCM Ext phase shift

[15..8] DCM_Ext_Done_cnt R Phase shift counter of DCM Ext. Counts the actual
number of DCM_Ext_PS_Value , which are
executed

[16] DCM_Smp_Busy 0 Phase shift of DCM Smp is idle or finished

 1 Phase shift of DCM Smp is in progress

[17] DCM_Smp_Overflow W When equal to ‘1’, this bit indicates the overflow of
the DCM Smp phase shift

[31..24] DCM_Smp_Done_cnt W Phase shift counter of DCM Smp. Counts the actual
number of DCM_Smp_PS_Value, which are
executed.

6.21.8 Accessing the DDR SDRAM Memory
DDR memory content could be read or write by the user program using the Indirect Addressing register.
The Indirect Address Register and Buffer Identifier Register should be set prior read or write the memory.

6.21.8.1 DDR A -memory
Register Space Register Number Register Address Buffer Identifier

Customer 0 0x2200 0x00

31..0

RWData

[31..0] RWData RW Data format depends on the customer application.

6.21.8.2 DDR B –memory
Register Space Register Number Register Address Buffer Identifier

Customer 0 0x2200 0x01

31..0

RWData

FDK Reference Manual Page 124 of 165

[31..0] RWData RW Data format depends on the customer application.

6.21.9 Constraints
• Clock Constraint

This core assumes an IB_Clk frequency of 33 MHz. This constraint must be defined for the clock
manager component and is automatically propagated throughout the whole design.

• User Port Clock Constraints

This core assumes a Sysclk frequency of maximum 133 MHz. This constraint must be defined for the
clock manager component and is automatically propagated throughout the whole design.

• DDR A&B Port Clock Constraint

This core assumes a DDR clock frequency of 166 MHz. This constraint must be defined for the clock
manager component and is automatically propagated throughout the whole design.

• Output and Input Signal constraints

They are set in the design, using Xilinx primitives.

6.21.10Resource Utilization
Resource count and relative usage in the target Xilinx Virtex II Pro – XC2VP70-6FF1517:

Resources Used Available Utilization

Block RAMs 20 328 6.1%

Function Generators 4120 66176 6.2%

CLB Slices 3167 33088 9.6%

Dffs or Latches 6334 69068 9.2%

6.21.11Version History

Date FDK Version Comments
February 06 Beta 6 New core

March 06 Beta 7 Description updated.

FDK Reference Manual Page 125 of 165

6.22 DDR Memory Control Example
The block ddr_ctr_test_only is delivered as an example of interfacing the ddr_interface
core. Developers should remove it or adapt it for their own purpose. Its main function is to verify the
correct behavior of the two user ports of the ddr_interface block. This is done by exercising fixed
pattern with short burst (2x128 bits) and long burst (256x128 bits).

6.22.1 Port Description

Signal Size Type Short Description

IB_Customer
IB_Dirsel
IB_Write
IB_Rdy
IB_TimeO
IB_Addr
IB_DataW
IB_DataR

1
1
1
1
1
31
32
32

In
In
In
Out
In
In
In
Out

Must be connected to the IB-BUS signal with the same
name. For details please refer to the description of the IB-
BUS.

IB_Clk 1 In Internal Bus clock, must be connected to lbclkg , the
Local Bus clock.

DReset 1 In Reset, must be connected to the general reset Dreset .

UPx_ADS
UPx_Write
UPx_Address
UPx_Burst
UPx_End
UPx_DataR_En
UPx_DataW
UPx_WriteEn
UPx_DataR
UPx_DataR_Valid

2x1
2x1
2x20
2x1
2x1
2x1
2x128
2x1
2x128
2x1

Out
Out
Out
Out
Out
Out
Out
Out
In
In

Must be connected to the corresponding pins of the core
ddr_interface . For details please refer to the
description of the core ddr_interface .

Sysclk 1 In It must be connected to the system clock Sysclk

6.22.2 Registers

6.22.2.1 DDREControl
Register Space Register Number Register Address

Customer 67 0x230C

31..6 5 4 3..2 1 0

-- Burst2 StartTest -- SmallMem --

[1] SmallMem W It must be set ‘1’ to perform user port tests on reduced memory
size in order to reduce the simulation time.

 0 Normal operation

 1 Simulation

[4] StartTest W Setting to ‘1’ starts the built-in test. The ddr_interface
core must be set in the user port mode before starting the test.

[5] Burst2 W Access type for the built-in test:

 0 burst256 access (256 x 128 bits).

 1 burst2 access (2 x 128 bits)

FDK Reference Manual Page 126 of 165

6.22.2.2 DDREStatus
Register Space Register Number Register Address

Customer 67 0x230C

31..12 11 10 9 8

-- -- TestErrorB TestFailB TestEndB

7 6 5 4 3..1 0

-- TestErrorA TestFailA TestEndA -- --

[4] TestEndA R Set to ‘1’ when the test of the DDR bank A is complete. Reset to
‘0’ when the test is started.

[5] TestFailA R Latches to ‘1’ when at least one error occurs. Reset to ‘0’ when the
test is started.

[6] TestErrorA R Set to ‘1’ for a single clk period when an individual test fails.

[8] TestEndB R Set to ‘1’ when the test of the DDR bank B is complete. Reset to
‘0’ when the test is started.

[9] TestFailB R Latches to ‘1’ when at least one error occurs. Reset to ‘0’ when the
test is started.

[10] TestErrorB R Set to ‘1’ for a single clk period when an individual test fails.

6.22.3 Resource Utilization
Resource count and relative usage in the target Xilinx Virtex II Pro – XC2VP70-6FF1517:

Resources Used Available Utilization
Function Generators 1020 66176 1.5%

CLB Slices 510 33088 1.5%

Dffs or Latches 661 69068 1.0%

6.22.4 Version History

Date FDK Version Comments
February 06 Beta 6 New core

March 06 Beta 7 Description updated.

FDK Reference Manual Page 127 of 165

6.23 Base Streamer Example
The block str1_example is instantiated in the Base Streaming Base Design described in the
paragraph 5.5. It is an example of how to build different types of data frame and how to send the frames
to the serial front panel data port controller slc_controller that is instantiated in the block
slc1_interface.

This core also implements the two monitoring buffers, the TX-Monitor buffer and the RX-Monitor buffer.
Both can be read by program and are useful for verification purpose.

The block str1_raw mixes the stream A and B to a single unified stream in an interleaved fashion. The
unified stream could also be reordered in order to align the trigger position to the 16 samples data blocks.
Once enabled and after each trigger, the block str1_raw generates and sends a Raw Data frame to the
FrameR port of the Frame multiplexer. The Raw Data frame has a 128 bits header followed by a
programmable number of raw samples [or bytes].

The unified stream is also connected to the block str1_acc . This block perform the store accumulate
function. The number of acquisition to accumulate is programmable from 1 to 256. When the
accumulation completes, the block str1_acc generates and sends an Accumulated Data frame to the
FrameA port of the frame multiplexer. The Accumulated Data frame has a 128 bits header followed by a
number of accumulated data equal to the number of programmed of Raw Data samples. In bytes, this
corresponds to double the number of programmed samples because the accumulated data is now on 16
bits instead of the 8 bits initial raw Data.

After the Accumulated Data frame has been sent to the frame multiplexer, the block
str1_parameters generates and sends a Parameter Data frame to the FrameP port of the Frame
multiplexer. The Parameter Data Frame has a 128 bits header followed by a fixed number of parameters.
In the example, there is 256 parameters, each parameters is 128 bits wide.

The Frame Multiplexer simply multiplexes one of the input frames to TX-Frame output. The TX-Monitor
Buffer is a spy on the TX-Frame and can be read by the user program.

For verification, the front-panel TX output of the optical link could be looped back to the RX input of the
optical link and the received data could be monitored with the RX-Monitor Buffer and readout by the user
program. This makes possible to verify received data are strictly identical to the transmitted data.

Once enabled, the TX- and the RX-Monitor buffer will store one Raw Data frame, one Accumulated Data
frame and one Parameter Data frame and will stop until restarted. Two readable status bits, one for RX
and one for TX buffer, indicate when the monitor buffers are ready for readout.

Monitoring can be enabled or disabled at any time. Monitoring has no effect on the streaming process.

FDK Reference Manual Page 128 of 165

6.23.1 Framing Sequence Flow Chart

The streaming or framing sequence is controlled by the main state machine str1_ctr .

Stream_Ch1_Ch2
Accumulate_Ch1_Ch2

Framing Sequence

Start ?

T

F

Inititialise Accumulation

Trigger Event ?

T

F

Nbr of accumulated
 event reached ?

T

F

Stop ?

T

F

Stream_Accumulation

Stream_Parameters

6.23.2 Raw Data Frame

The Raw Data Frame consists of a 128 bits header followed by a programmable number of raw data. Each
raw data is 8 bits.
Header, 1x 128 bits

127..120 119..64 63..0

FrameType=x’00’ TimeStamp Fixed to 0
Raw Data

7..0 7..0 ….. 7..0

RawData#1 RawData#2 … RawData#n

[127..120] FrameType Fixed to X’00’, indicates the frame is a Raw Data frame

[119..64] TimeStamp The TimeStamp value indicate the arrival time of the trigger

[7..0] RawData Raw data. The number of raw data is programmable with the bits SFS
of the Base Streamer Configuration Register. The values are signed 8
bits values.

6.23.3 Accumulated Data Frame

The Accumulated Data Frame consists of a 128 bits header followed by a programmable number of
accumulated data. Each accumulated data is 16 bits.
Header

127..120 119..64 63..0

FrameType=x’01’ TimeStamp Fixed to 0
Accumulated Data

15..0 15..0 ….. 15..0

AccData#1 AccData#2 … AccData#n

FDK Reference Manual Page 129 of 165

[127..120] FrameType Fixed to X’01’, indicates the frame is an Accumulated Data frame

[119..64] TimeStamp The TimeStamp value indicates the arrival time of the trigger of the
last acquisition that participates to the accumulation.

[7..0] AccData The number of Accumulated data is equal to the number of
programmed raw data. The values are signed 16 bits values.

6.23.4 Parameter Data Frame

The Parameter Data Frame consists of a 128 bits header followed by a 256 parameters. Each parameter
data is 128 bits.
Header

127..120 119..64 63..0

FrameType=x’02’ TimeStamp Fixed to
x’0123456789ABCDEF’

Parameters Data

128..0 128..0 ….. 128..0

ParamData#1 ParamData#2 … ParamData#256

[127..120] FrameType Fixed to X’02’, indicates the frame is a Parameter Data frame

[119..64] TimeStamp The TimeStamp value indicate the arrival time of the trigger of the
last acquisition that participate to the accumulation.

[7..0] ParamData The value of each Parameter is fixed to
x’0123456789ABCDEF0123456789ABCDEF’ .

6.23.5 Port Description

Signal Size Type Short Description

Internal Bus

IB_Customer
IB_Dirsel
IB_Write
IB_IndirCtr
IB_Rdy
IB_TimeO
IB_End
IB_Addr
IB_DataW
IB_DataR

1
1
1
31
1
1
1
32
32
32

In
In
In
In
Out
In
Out
In
In
Out

Must be connected to the IB-BUS signal with the same
name. For details please refer to the description of the IB-
BUS.

IB_Clk 1 In Internal Bus clock, must be connected to lbclkg , the Local
Bus clock.

Reset 1 In Reset, must be connected to the general reset Dreset .

Sysclk 1 In It must be connected to the system clock Sysclk2

Data Stream and Trigger

SP_Data_A 128 In Samples from channel A

SP_Data_Val_A 1 In Data valid from channel A

Sp_first_A 4 In Position of the trigger in the data block

SP_Data_B 128 In Samples from channel B (AC/SC240 only)

SP_Data_Val_B 1 In Data valid from channel B (AC/SC240 only)

SP_Trigger 1 In Trigger marker

SP_Trigger_Reo
rder

1 In Trigger reorder control input

FDK Reference Manual Page 130 of 165

Signal Size Type Short Description

TimeStamp 56 In Trigger time stamp value from the trigger core

Enable_Trigger 1 Out Trigger Enable to the Trigger core

Transmit port

Tx_Rem 4 out TX Data Remainder: Indicates the number of valid bytes on
given transfers.

Tx_Data 128 out TX Data Bus. It contains the data of the frame to be
transmitted.

Tx_Sof_n 1 out TX Start of Frame: Indicates the first transfer for a given
frame.

Tx_Eof_n 1 out TX End of Frame: Indicates the last transfer for a given
frame.

Tx_Src_Rdy_n 1 out TX Source ready : Indicates that the source is ready to
transfer data

Tx_Dst_Rdy_n 1 in TX Destination ready : Indicates that the core is ready to
accept data

Tx_Empty 1 in TX Destination ready : Indicates that the core is ready to
accept data

Tx_NRDY 1 in TX Destination ready : Indicates that the core is ready to
accept data

Receive port

Rx_Rem 4 In RX Data Remainder: Indicates the number of valid bytes on
given transfers.

Rx_Data 39 In RX Data Bus. It contains the data and the error bus of the
received frame.

Rx_Sof_n 1 In RX Start of Frame: Indicates the first transfer for a given
frame.

Rx_Eof_n 1 In RX End of Frame: Indicates the last transfer for a given
frame.

Rx_Src_rdy_n 1 In RX Source ready : Indicates that the core is ready to transfer
data

Other

Link_Err 1 Out Data Link Error: it indicates that the data link has
encountered an error condition

Link_Rdy 1 Out Data Link Ready: it indicates that the data link is initialized
and ready for the transmission or reception of data.

Led1 2 Out To control the front panel led L1:

Link 0 Status :

• Red: ODL faulty.

• Green: ODL successfully initialized and active in TX Mode.

• Orange: ODL successfully initialized.

Led2 2 Out To control the front panel led L2:

Acquisition Status :

• Orange: transfer disabled

• Green: Transfer & Trigger Enabled

• Red: Transfer Enabled & Trigger received

6.23.6 Registers

6.23.6.1 Main Control Register

FDK Reference Manual Page 131 of 165

This register defines the main control of the Base Streamer Application.
Register Space Register Number Register Address

Customer 64 0x2300

31..24 23..16

ACCN -

15 14 13 12 11..10 9 8 7..6 5..4 3..0

BIDIR CPRB CPTB - STFX - - -

[8] STFX RW Start/Stop framing process according to the Streamer Mode

 0
1

Stop
Start

[13] CPTB RW Setting CPTB to ‘1’ will start capture a new TX-Monitor buffer according
to the configured Capture Mode. CPTB shall remain ‘1’ until the TX-
Monitor buffer is full or until the programmer wants to abort the capture
by setting CPTB back to ‘0’.

[14] CPRB RW Setting CPRB to ‘1’ will start capture a new RX-Monitor buffer according
to the configured Capture Mode. CPRB shall remain ‘1’ until the RX-
Monitor buffer is full or until the programmer wants to abort the capture
by setting CPRB back to ‘0’.

[15] BIDIR RW This bit shall be set ‘1’ when the RX-Monitor buffer is used for
monitoring.

[31..24] ACCN RW Number of Accumulation before to send accumulated data. Value 0 to
255 for number of accumulation 1 to 256.

To restart another capture, the start capture bits, CPTB and CPRB shall be set to ‘0’ and then set ‘1’
again.

6.23.6.2 TX-Monitor Buffer Control and Status

Register Space Register Number Register Address

Customer 66 0x2308

31 30 29..28 27 26 25 24 23 22 21..20 19..16

RDY - -- - -

15..0

-

[31] RDY R Buffer Ready: After a capture is started, RDY is set ‘1’ when the TX-
Monitor buffer is ready for readout. RDY is set ‘0’ when the capture bit
CPTB of the Main Control Register is set ‘0’.

6.23.6.3 RX-Monitor Buffer Control and Status

Register Space Register Number Register Address

Customer 67 0x230C

31 30 29..28 27 26 25 24 23 22 21..20 19..16

RDY - - - -

15..0

-

[31] RDY R Buffer Ready: After a capture is started, RDY is set ‘1’ when the RX-

FDK Reference Manual Page 132 of 165

Monitor buffer is ready for readout. RDY is set ‘0’ when the capture bit
CPTB of the Main Control Register is set ‘0’.

6.23.6.4 Base Streamer Configuration Register

Register 73 defines the length of the Stripe Frame for Stream.
Register Space Register Number Register Address

Customer 73 0x2324

31..16

-

15..0

SFS

[15..0] SFS RW Size of a Stripe Frame in units of 16-sample blocks. SFS does not take into
account the size of the Header. The number of samples transmitted with a
Stripe Frame is SFS x 16 plus the Header size. The valid range is 256 samples
to 64K samples (SFS = 0xF to 0xFFF)

6.23.7 Resource Utilization
Resource count and relative usage in the target Xilinx Virtex II Pro – XC2VP70-6FF1517:

Resources Used Available Utilization
Function Generators 1020 66176 1.5%

CLB Slices 510 33088 1.5%

Dffs or Latches 661 69068 1.0%

6.23.8 Version History

Date FDK Version Comments
February 06 Beta 6 New core

March 06 Beta 7 Description updated.

January 07 1.0 New SC240 Base Design

FDK Reference Manual Page 133 of 165

7. VHDL Test Bench
7.1 Overview

The Agilent Acqiris-supplied Test Bench is a simulation environment that simplifies the simulated
functional verification of new or existing designs.

There is one test bench for each base design. The test bench component name is the name of the base
design with the adjunction of “ _tb” . The test bench usually contains a tester component, the base design
itself, and the attached memories when required. There is a single tester for all ac2x0 base designs,
ac240_top_sysclk_tester and one tester for the Base streamer:
sc240_top_sysclk_str1_tester .

The tester has been designed with the requirement that implementing new tests should not require
recompilation for simulation. It is also based on the concept of executing the self verifying tests while the
simulation is running. This is achieved by reading and executing commands from a text script file,
configuring the FPGA, running some simulated operations, and then reading the resulting data with the
ability to compare them to a reference and to report the result of the comparison. The report feature can
be configured to list only the errors, all test results or all commands.

The reference data can be either intrinsic data or data read from a text file. The test results are reported to
the Modelsim transcript window with a basic “end of simulation” summary.

Developers need not understand the tester in detail, but should be aware of the existing commands to be
able to write their own test bench scripts. The table below is a summary of the existing commands. They
are described in detail later in this chapter.

Command Comment

LL Writes the text argument to the Modelsim transcript window.

SHOWAC Enables locally to display all commands to the Modelsim transcript window.

HIDEAC Resets the SHOWAC command.

DC Declares and sets a value to a numeric constant.

DF Declares and sets a value to a string constant.

EF Executes lower level script file.

BG Begin group

EG End Group

RUN Makes the simulation run when not automatically started by another command.

CWx Writes to the FPGA (emulates driver register level write operations). Burst available.

CRx Reads from the FPGA (emulates driver register level read operations). Burst & Test
available.

IWx Writes to the FPGA internal bus. Needs a specific test bench. Burst available.

IRx Reads from the FPGA internal bus. Needs a specific test bench. Burst & Test available.

CKx Defines clock frequency, start / stop clocks.

WP Signal Probe with capability to wait for a specific pattern.

MACF Generation of de-multiplexed data stream. Emulates the ADC and demux ASIC.

FDK Reference Manual Page 134 of 165

7.2 VHDL Generic of the Tester Component
Several simulation parameters can be set through VHDL generics of the tester component.

Generic type Short Description
DefaultScriptFile String Pathname of the script file that Modelsim will attempt to

open at the beginning of the simulation. This could be a
path relative to the Modelsim working directory.

TrigLevel Std_logic_vector(7..0) Trigger level

ShowAllTest Boolean It must be set True to list all tests to the Modelsim
transcript window. False to list only failing test.

ShowAllCmd Boolean It must be set True to list all commands to the Modelsim
transcript window.

7.3 Script Command Syntax
A script consists of a collection of files including commands. Each command contains first a command
name keyword followed by a series of arguments.

The syntax of this language is divided into two grammars. The first of is the lexical grammar which
define the tokens of the language. The second one is the syntaxical grammar which defines the correct
sequences of tokens to write commands. The two grammars are as follows in the EBNF notation.

In the syntaxical grammar, all the italic upper-case words refer to tokens defined by the lexical grammar.

7.3.1 Lexical Grammar

input = { inputelement }

inputelement = whitespace
 | token

whitespace = ' ' | '\t' | '\f' | '\r'

token = command_name
 | number
 | string
 | constant
 | switch
 | semicolon
 | comment
 | eol

command_name = letter_up {letter_up | decdigit | '_ '}

number = '0' 'd' decdigit {decdigit}

 | '0' 'x' hexdigit {decdigit}

 | '0' 'b' bindigit {bindigit}

string = '"' { schar } '"'

constant = '_' (letter | decdigit) {letter | decdi git | '_'}

switch = '\' (letter | decdigit)

semicolon = ';'

comment = '-' '-' { cchar }

eol = '\n'

letter = letter_up | letter_down

FDK Reference Manual Page 135 of 165

letter_up = 'A' | ... | 'Z'

letter_down = 'a' | ... | 'z'

Decdigit = '0' | ... | '9'

Bindigit = '0' | '1'

Hexdigit = '0' | ... | '9' | 'a' | ... | 'f' | 'A' | ... | 'F'

Cchar = all characters except '\n'

Schar = all characters except '"' and '\n'

7.3.2 Syntaxical Grammar

SCRIPT = { LINE }

LINE = [EXPRESSION] [comment] eol

EXPRESSION = command_name {ARG} (switch ARG} semicolon

ARG = string
 | number
 | constant

7.3.3 Description of the two grammars

A script contains a list of commands and some comments. Comments begin with a double dash and are
valid until the end of a line (as in VHDL). Except for empty or comment lines, a line contains exactly one
command which consists in a command name followed by arguments. An argument is either a number, a
string, a constant or a switch. A switch is special argument type composed of two parts: the first one is a
backslash follows by a character while the second one is either a number, a string or a constant. Each
command must be followed by a semicolon. The arguments of a command are either mandatory or
optional. The optional arguments always follow the mandatory ones, but the switches, which are optional
by definition, always follow the optional arguments. In short, the arguments are in the following order:
mandatory parameters, optional parameters, and switches.

Only 32-bit unsigned values are supported. The following syntax must be observed within the script files:

• 0d must precede any decimal value (0d11)

• 0x must precede any hexadecimal value (0xB)

• 0b must precede any binary value (0b1011)

7.3.4 Special rules

Some rules are not expressed within the grammars. They are as follows:

- the maximum number of commands is 1000

- the maximum number of tokens is 20’000

- the maximum number of declared constants is 400

- the maximum size of a token is 120 characters

- a constant is valid from the line after its declaration to the end of the script independently of the
files structure of the script. If a constant is declared in a file F2 called by the file F1, it is valid
from the line after its declaration in the file F2 to the end of the file F1 including all files called
from F1 after F2. In other words, the file hierarchy is first flatten before checking the scope of
the constants

- a group can be opened in a file and closed in another one. As for constants, the file hierarchy is
first flatten before checking for groups

If needed, these values can be changed in the file type_def_pkg.vhd in the ACQ_LIB library.

7.3.5 Data files

Some commands (e.g. CWF and CRFB) need a string argument which indicates a file containing data to
write on the bus or data to use for comparison. Such a file must respect the following syntaxical grammar.

FDK Reference Manual Page 136 of 165

DATAFILE = { LINE }

LINE = [number] [comment] eol

An example of such a file is given above:

-- generated by the command $ perl ./WfGen.pl -b 10 -l 50 -o 512
0d512
0d576
0d639
0d700
0d758

7.4 Script Commands

This section details all the available commands. For each command, all the arguments are described. Note
that an argument in square brackets indicates an optional argument that can be omitted.

Note that all arguments can be set explicitly or with predefined constants, using the DC or DF command,
i.e. a number can be replaced by a constant declared with the DC command and a string by a constant
declared with the DF command.

All the commands are blocking in the sense that the execution of the script is paused until the command is
finished. They are two exceptions to this rule: D2RF and D2WF.

7.4.1 Creating Groups: BG / EG

In order to facilitate the simulation of a complex design, the concept of group of commands was
introduced. It is therefore possible to run the whole script including all files or to run only some groups.

Each group is defined by a label (a string) and is delimited by the command BG (Begin Group) and EG
(End Group).

Begin group.

BG NAME

End group

EG NAME

The entire text is displayed

NAME string Name of the group

Example:

BG “test”;
…
EG “test”;

Defines the group “test”

7.4.2 Displaying Comments: LL

Displays comments in the Modelsim transcript window.

LL [TEXT]

FDK Reference Manual Page 137 of 165

The entire text is displayed

TEXT string This text is displayed

Example:

LL “TEST9 FIFO Read”; The text “TEST9 FIFO Read” is printed to the Modelsim transcript
window.

7.4.3 Report Control Command
This command is useful to modify the reporting behavior without the need of recompiling the design. It
allows reducing the amount of text being printed.

The command SHOWAC configures the test bench to report all subsequent commands to the Modelsim
transcript window, independently of the setting of the generic parameters ShowAllCmd or
ShowAllTest of the tester component.

The command HIDEAC configures the test bench to revert to the reporting as defined by the generic
ShowAllCmd or ShowAllTest of the tester component. In other words, it cancels the effect of the
SHOWAC command.

Forces the reporting of all commands to the Modelsim transcript window.

SHOWAC

All subsequent commands of the test sequence are reported, until the HIDEAC command is issued.

Forces the reporting to the rules defined by the tester generic.

HIDEAC

Example:

SHOWAC;

Other commands…

HIDEAC;

7.4.4 Defining a Numeric Constant: DC

The DC command defines a numeric constant of type unsigned integer. This constant can replace any
numeric parameter of the same type in any command. Remember that the name of a constant must begin
with an underscore.

Defines a numeric constant of type unsigned integer

DC NAME VALUE

NAME - Name of the constant.

VALUE number The value must be a positive integer, limited to 32 bits binary.

Example:

DC _Tvalue 0x12345678; Assign the value 0x12345678 to the constant Tvalue.

DC _Reg0 0x2210; Assign the value 0x2210 to the constant Reg0. Intended to
be the address of a register.

FDK Reference Manual Page 138 of 165

CW _Reg0 _Tvalue; Write Tvalue to the register Reg0

7.4.5 Defining a String Constant: DF
The DF command defines a string constant. This constant can replace any string parameter in any
command. Remember that the name of a constant must begin with an underscore. This type of constant is
usually used to define paths to script files or data files.

Defines a string constant, name, and value limited to 120 characters (including quotes)

DF NAME VALUE

NAME - Name of the constant, use only alphabetic characters.

VALUE string Any valid sequence of characters.

Example:

DF _wave1 “D:/test/wave1.txt”; Absolute path

DF _wave2 “wave2.txt”; Within the Modelsim directory.

DF _wave3 “../testfiles/wave3.txt”; Relative to the Modelsim directory

7.4.6 Executing a Script: EF
The EF command enables execution of a test bench script from a script file. This enables to split a
number of tests into several files, making them more readable and easier to handle. No limitation exists
on the hierarchy depth, i.e. a script can call another one which can call a third one, etc.

Defines a string constant, name, and value limited to 120 characters (including quotes)

EF FILENAME

FILENAME string Name of the script file to be executed

Example:

DF _TESTR “D:/test/RegisterTest.txt”; Define the script path

EF _TESTR; Execute a script file

EF “D:/test/RegisterMem.txt”; Execute a script file

7.4.7 Run the Simulator: RUN
The RUN command serves two purposes: It always runs the test bench for the amount of time specified
by the first parameter value. It also can delay the processing of the following script commands for a
certain amount of time if the second parameter value is omitted or null. Otherwise, the subsequent script
commands are immediately processed by the test bench.

When a command is initiated, for example when writing a bit into a register that triggers a complete
acquisition (issued from a CW command), the simulation time advances until the CW command is
complete. But afterwards, the simulation does not continue unless there is another command to be
executed. If you want to run for a defined time before executing another command you can use the RUN
command.

Runs the simulation for a defined period of time.

RUN TIME [MODE]

TIME number Time in ns.

FDK Reference Manual Page 139 of 165

MODE number When missing or when set to 0d0, the simulator runs for a period of time
equal to TIME before reading the next script command.

When set to 0d1, the simulator runs for a period of time equal to TIME,
but also reads and executes immediately the next script command.

When omitted, this parameter is set to 0d0

Example:

RUN 0d1000; Run simulation for 1000 ns (1 us), then execute next script command.

RUN 0d1000 0d1; Run simulation for 1000 ns (1 us) and simultaneously execute subsequent
script commands.

7.4.8 Writing to Local Bus: CWx
This command emulates writing to the module, and more specifically to the FPGA, which is the area of
interest for firmware developers. It allows single or repeated single writes as well as burst writes. This
command can be used to configure and control processes within the FPGA. A CWx command produces a
write access (or several write accesses) on the Local Bus.

Single or repeated write, explicit data.

CW ADDRESS WDATA [INCR] [REPEAT]

This command can be used for Direct as well as for Indirect Access.
In the case of Indirect Access, it executes a number of single word transfers.

Burst write, explicit data.

CWB ADDRESS WDATA INCR BURSTLEN

This command only allows Indirect Access.

Single or multiple write, data read from file.

CWF ADDRESS RFILE OFFSET REPEAT

This command can be used for Direct as well as for Indirect Access.
In the case of Indirect Access, it executes a number of single word transfers.

ADDRESS number Destination address

WDATA number Data to write to the destination

INCR number Data increment for repeated or burst operations (next WDATA <=
WDATA + INCR). When omitted in the CW command, this
parameter is set to 0d0

REPEAT number Number of times to repeat. When omitted in the CW command, this
parameter is set to 0d1

BURSTLEN number Number of data in the burst

RFILE string File path for data to be written to destination

OFFSET number Number of data discarded at the beginning of the file

Example:

CW 0x2200 0x5; Single indirect write to the processing FPGA

CW 0x2210 0xAA; Single direct write

CWF 0x2200 “../testdata.txt” 0d2 0d5; 5 x indirect write, data from file, starting
from the third data

FDK Reference Manual Page 140 of 165

7.4.9 Reading from Local Bus: CRx
This command emulates reading the module, and more specifically reading the FPGA, which is the area
of interest for firmware developers. It allows single or repeated single reads as well as burst reads. This
command can be used to configure and control processes within the FPGA. A CRx command produces a
read access (or several read accesses) on the Local Bus.

Single or repeated read, explicit data.

CR ADDRESS RDATA [INCR] [REPEAT]

This command can be used for Direct as well as for Indirect Access.
In the case of Indirect Access, it executes a number of single word transfers.

Burst read, explicit data.

CRB ADDRESS RDATA INCR BURSTLEN

This command only allows Indirect Access.

Burst read, Data read from file.

CRFB ADDRESS RFILE OFFSET REPEAT

This command only allows Indirect Access.

ADDRESS number Destination address

RDATA number Reference data for comparison with read data

INCR number Data increment for repeated or burst operations (next RDATA <=
RDATA + INCR) When omitted in the CR command, this parameter
is set to 0d0

REPEAT number Number of times to repeat. When omitted in the CR command, this
parameter is set to 0d0

BURSTLEN number Number of data in the burst

RFILE string File path to data for comparison with read data

OFFSET number Number of data discarded at the beginning of the file

Available switches:

\M MASK number Mask for the comparison. A ‘1’ at a given position indicates that this
bit position will be taken into account. When omitted, the mask is put
to 0xFFFFFFFF

Example:

CR 0x2200 0x5; Single indirect read to the processing FPGA

CR 0x2210 0xAA \M 0xFF; Single direct read. Only the 8 LSB are taken
into account for the comparison to the 0xAA
value

CRFB 0x2200 “../testdata.txt” 0d2 0d5; 5 x indirect read, reference data from file,
starting from the third data

7.4.10 Writing to Internal Bus: IWx
This command partially emulates writing to the internal bus port (IB-BUS) of the tester component
acqt_acqiris_tester_top of the library acq_lib . This port is a ‘simulation’ port and is not
identical to the IB-BUS inside the FPGA. The command IWx therefore cannot be used to communicate

FDK Reference Manual Page 141 of 165

directly with the internal bus within the FPGA. The IB-BUS port of the tester component is usually not
forwarded to the test bench component of the Base Designs.

Developers can use this command to implement test benches for sub-parts which communicate with the
internal bus port as defined by Agilent. By connecting such sub-parts directly to the IB-BUS of the tester
component, the test bench complexity for non-system test benches is reduced.

These “Ixxx” commands have a corresponding “Cxxx” command. This simplifies the conversion of
internal bus test benches to system test benches, by simply replacing the “I” with a “C”.

Only a single Internal Bus can be emulated with tester component.

Single or repeated write, explicit data.

IW ADDRESS WDATA [INCR] [REPEAT]

This command can be used for Direct as well as for Indirect Access.
In case of Indirect Access, it executes a number of single word transfers.

The address is any valid FPGA address except the Indirect Data Register.

Burst write, explicit data.

IWB ADDRESS WDATA INCR BURSTLEN

This command should be used only in the case of Indirect Access.
The address is the Indirect Data Register.

Single or multiple write, data read from file.

IWF ADDRESS WFILE OFFSET REPEAT

This command can be used for Direct as well as for Indirect Access.
In the case of Indirect Access, it executes a number of single word transfers.

ADDRESS number Is the full address as if the register was addressed through the Local
Bus interface. The upper bits are not used. This facilitates the
translation of the internal bus command to a Local Bus command or
vice-versa.

Command IW: any valid FPGA address except the Indirect Data
Register.

Command IWB: The address is the Indirect Data Register, 0x2200
for the processing FPGA and 0x2600 for the communication
FPGA.

WDATA number Data to write to the destination

INCR number Data increment for repeated or burst operations (next WDATA <=
WDATA + INCR)

REPEAT number Number of times to repeat

BURSTLEN number Number of data in the burst

WFILE string File path for data to be written to destination

OFFSET number Number of data discarded at the beginning of the file

Example:

IWB 0x2200 0x5 0x1 0d1; Indirect write, this case is a burst of 1 data.

IW 0x2210 0xAA; Single direct write.

FDK Reference Manual Page 142 of 165

7.4.11 Reading From Internal Bus: IRx
This command partially emulates reading from the internal bus port (IB-BUS) of the tester component
acqt_acqiris_tester_top of the library acq_lib . Please refer to the comments of the previous
section for more explanations.

Single or repeated read, explicit data.

IR ADDRESS RDATA [INCR] [REPEAT]

This command can be used for Direct as well as for Indirect Access.
In case of Indirect Access, it executes a number of single word transfers.

The address is any valid FPGA address except the Indirect Data Register

Burst read, explicit data.

IRB ADDRESS RDATA INCR BURSTLEN

This command should be used only in the case of Indirect Access.

The address is the Indirect Data Register.

Burst read, Data read from file.

IRFB ADDRESS RFILE OFFSET REPEAT

This command only allows Indirect Access.

ADDRESS number Is the full address as if the register were addressed through the Local
Bus interface. The upper bits are not used. This facilitates the
translation of the internal bus command to a Local Bus command or
vice-versa..

Command IR: any valid FPGA address except the Indirect Data
Register.

Command IRB: The address is the Indirect Data Register, 0x2200.

RDATA number Reference data for comparison with read data

INCR number Data increment for repeated or burst operations (next RDATA <=
RDATA + INCR)

REPEAT number Number of times to repeats

BURSTLEN number Number of data in the burst

RFILE string File path to data for comparison with read data

OFFSET number Number of data discarded at the beginning of the file

Available switches:

\M MASK number Mask for the comparison. A ‘1’ at a given position indicates that this
bit position will be taken into account. When omitted, the mask is put
to 0xFFFFFFFF

Example:

IRB 0x2200 0x5 0x1 0d1; Indirect read, this case is a burst of 1 data word

IR 0x2210 0xAA \M 0xFF; Single direct read. Only the 8 LSB are taken into
account for the comparison to the 0xAA value

FDK Reference Manual Page 143 of 165

7.4.12 Clock Generation: CKx
Up to 8 different clocks can be defined for test benches. The clocks are generated on the outputs
ExtClk(7:0) of the tester component: acqt_acqiris_tester_top of the library acq_lib .
Each one can be enabled or disabled separately. These clock signals are usually passed to the test bench
component of the Base Designs.

Setting clock period

CKSET CKNUMBER CKPERIOD

Enabling clocks

CKEN ENMASK

CKNUMBER number A number from 0 to 7 referencing the clock signal ExtClk.

CKPERIOD number Clock period in picoseconds, must be a positive integer.

ENMASK number An 8-bit pattern for enabling the clocks. If the bit i (with i = 0 to
7) of ENMASK is set to ‘1’, the clock signal ExtClk(i) is
enabled.

If the bit i is set to ‘0’, the corresponding clock signal is disabled.

Examples:

CKSET 0d0 0d1000; Period of clk0 is 1 ns.

CKSET 0d2 0d8000; Period of clk2 is 8 ns.

CKEN 0b101; The two clocks ExtClk(0) and ExtClk(2) are enabled. All
other clocks are disabled.

In the previous version of this command, the base unit was a nanosecond, not a picosecond. All the
custom scripts using the previous “ns” units must therefore be modified to the new “ps” units.

7.4.13 Probe Interface: WP
Up to 8 different probes can be used for test benches. The signals to probe must be connected to the
inputs ExtProbe(7:0) of the tester component acqt_acqiris_tester_top of the library
acq_lib . Each probe can be masked individually. The probe signals are usually connected to the test
bench component of the Base Designs.

The implemented function simply waits until the defined masked pattern exists on the signal ExtProbe .
This is useful to wait for some process to end, before continuing the simulation (example: wait for an
interrupt signal).

Wait for probe pattern

WP MASK PATTERN

MASK number An 8-bit mask where the bit i, in the range 0 to 7 will mask the value
of the signal ExtProbe(i), setting the probe value to be ‘0’ if the bit is
set ‘0’ or to the value of the connected signal if the bit is set ‘1’.

FDK Reference Manual Page 144 of 165

PATTERN number An 8-bit pattern

Example:

WP 0b1011 0b11; Wait until signal 3=0 AND signal 1 = 1 AND signal 0 = 1

7.4.14 Data Stream Generation: MACF
This command generates a digital data stream intended to emulate the acquisition and demultiplexer
function that supplies ADC data to the Data Processing Unit.

The data are read from a file and demultiplexed to the signal DE_DATA which is an output from the
component acqt_acqiris_tester_top of the library acq_lib . The command also generates the
clock DECLK that must be used to store the data. The output signal DE_DATA is 16 samples wide. The
negative edge of DECLK must be used for clocking it into subsequent registers.

This is a single channel command. For multiple channel versions there some additional circuitry is
implemented within the tester component of the Base Designs. For dual channel versions, we usually use
the MACF command at twice the effective sampling rate, the data being de-multiplexed by 2 and the
clock period multiplied by two.

The data stream can start in two different ways, either immediately after the command is executed or
triggered by the input signal TRACPT of the component acqt_acqiris_tester_top . Please read
the description of the base design tester component to see if it is available and how it has been connected.

Generate demultiplexed data stream

MACF FILE PERIOD REPEAT [STARTMODE]

FILE Filename of source data

PERIOD declk period in ns

REPEAT Number of 16-sample blocks to send on the DE bus

STARTMODE 0d0 or omitted to start the data stream immediately
0d1 to start the data stream at the next rising edge of TRACPT

Example:

MACF ../src/aaa_debug 0d8 d10; Generate immediately 10 blocks of 16 data values from file,
declk period is 8 ns.

7.5 Version History

Date FDK Version Comments
September 05 Beta 4 Added Internal Bus command

May06 Beta 7 Add new command: SHOWAC, HIDEAC.
Overall Description updated.

Dec 06 1.0 New syntax

January 07 1.0 New SC240 Base Design

FDK Reference Manual Page 145 of 165

8. Design Flow
The purpose of this chapter is to describe the supported design flows and tools. You will find a
description on how the tools shall be configured, on what is specific to Agilent and on where to find the
information developers will need.

There are multiple design flows that are different from one to the next because the design entry tool
and/or the synthesizer are different. The design entry tool can be either HdlDesigner from Mentor
Graphics or a simple text editor while the synthesizer can be either Precision Synthesis from Mentor
Graphics or XST from Xilinx.

The VHDL simulator is Modelsim, there is no other choice. The “Place and Route” tool is ISE from
Xilinx.

It is responsibility of the developer to attend to specific course in order to get used to VHDL design and
tools usage.

The design flow can be :

Flow Design phase Tool for
Design Entry

Tool for
Simulation and
Synthesis

TOOL FOR
P&R

With
HdlDesigner

Design & Verification HdlDesigner Modelsim

 Implementation Precision Synthesis
or XST (ISE)

ISE

Without
HdlDesigner

Design &Verification Text Editor /
other

Modelsim

 Implementation Precision Synthesis
or XST (ISE)

ISE

The design entry tool for the flows without HdlDesigner can be either a simple text editor or another
higher level design entry tool.

The installer program will copy all FDK design files to the directory at the location defined by the
environment variable AcqirisFdkRoot. This directory is referenced hereafter as the FDKdirectory
whereas $AcqirisFdkRoot is used in path names and %AcqirisFdkRoot% is used within the value of an
environment variable.
The FDK directory structure is described hereafter in the paragraph about the HdlDesigner flow while the
key files are listed in the next chapter in the description of the developer library.

8.1 Standard Tools
Developing a new firmware will be faster in the early stage for developers using HdlDesigner. This is
why we strongly recommend that our customers buy it. Customers will have the advantage of a fully
integrated tool. Agilent Acqiris Technical support will be able to react much faster to any inquiry.

Tool Name Actual
Version

Features / Comment Approx.
Cost in

US$

HDL Designer
Author graphics

Mentor Graphics

2004.1b Graphical entry:

• State diagram.

• Block diagram.

• Integrated flow for synthesis and simulation.

• Facilitate work for documentation.

• Good overview of the whole design.

• 2nd party tool integration for Version control.

12.500

Modelsim PE / SE
Mentor Graphics

6.1b /d Best simulation tool on the market. 5600

Precision Synthesis
Mentor Graphics

2005c.79 New generation of mentor synthesis technology. 15000

ISE Foundation 8.1.03i Xilinx Synthesis Floorplanning and Place & Route. 3000

FDK Reference Manual Page 146 of 165

Edif or VHDL flow

Xilinx

8.2 Design Flow with HdlDesigner

HdlDesigner is our main tool for design management and to run synthesis or simulation. HdlDesigner is a
complex program with the capability of doing almost anything for FPGA firmware designers. We make
minor changes to the default mentor graphic HdlDesigner configuration. These changes can be set by
firmware developers by loading the default Acqiris Team and User configuration.

The directory structure is strongly oriented by the usage of HdlDesigner. It is based on a set of directories
containing design libraries. At the upper level, all supported design flows share the same directory
structure. So it is also useful for non HdlDesigner users to read this paragraph entirely.

8.2.1 Block Diagram

Acqiris Libraries

ModelSim compilation
Simulation

Graphical / Text Entry
HdlDesigner

ModelSim

Precision Synthesis
XST

Test Script

Functionnal Verification

Synthesis

Design Change

Simulation OK
or

Check Design for Synthesis

Post-Synthesis
Simulation

Customer Design
Customer Libraries

SDC
Timing Constraint

VHDL Text Libraries

Text VHDL generation

Simulation OK / Synthesis Check

UCF
Timing Constraint ISE - Foundation Post-Place & Route

Simulation

ChipScope

Chipscope Core Insertion
when necessary

Bitfile Generation
Run Application

Design Change

Xilinx Libr

FDK Reference Manual Page 147 of 165

8.2.2 Directory Structure of the FDK Installation

$AcqirisFdkRoot /* Purpose

lib_common Library group folder for Acqiris standard libraries.

lib_component Library group folder for third party libraries.

lib_projects Library group folder for Acqiris projects and base design(s).

lib_xilinx Library group folder for Xilinx libraries: unisim, simprim, xilinxcorelib

HdlDesigner Directory for HdlDesigner configuration and preferences

HdlDesigner/* Purpose
bitmaps Several icons bitmap for the HdlDesigner gui

mapping HdlDesigner Project file and shared project file for library mapping

preferences User and Team preferences for HdlDesigner

Directories of the
library folder

Purpose

hdlgraphic HdlDesigner Graphical Design files. Non HdlDesigner users should not take
care of these files. HdlDesigner will generate a vhdl text version of these

FDK Reference Manual Page 148 of 165

designs in the hdltext folder.

hdltext The vhdl source files for simulation and synthesis.

modelsim ModelSim compiled files & working directory. It includes the file modelsim.ini
that should be used to define the libraries and preferences for modelsim.

cores ISE source folder for sub-components with an edif or ngc description.

precision* Working directory for Precision Synthesis

ise* ISE implementation directory for the ISE EDIF flow

xst* ISE implementation folder for the XST design flow

* These directories are present only for the library ac240_developer_lib.

8.2.2.1 HdlDesigner SideData
Side Data are supplementary source design data (such as EDIF, SDF, and document header files) or
user data (such as design documents or text files) which are saved with a design unit view and can be
viewed using the Side Data browser. (design unit view: state machine, Block diagram, VHDL text
file,…).

8.2.2.2 HdlDesigner SideData Directory
There are two Side Data directories: The design data Side Data directory and the user data Side Data
directory. We only use the design data directory. Starting HdlDesigner 2004, the pathname of this
directory depends on the type of design unit view it is associated with.

Design unit type design data SideData Directory
Block diagram hdlgraphic/design_unit_name/struct.bd.info

State machine hdlgraphic/design_unit_name/fsm.sm.info

Text VHDL hdlgraphic/.hdlsidedata/design_unit_name.vhd.info

There is Side Data for each component with a non-VHDL description. For example when there is an
EDIF or NGC description, which is the case for cores or components created with the Xilinx core
generator. The necessary EDIF or NGC view will be copied to the directory cores of the developer
library.

There is Side Data for each top level base designs. It includes script files and configuration files for
downstream tools.

8.2.3 Configuring HdlDesigner

This paragraph describes how developers should configure HdlDesigner. All necessary files are copied to
the directory $AcqirisFdkRoot\HdlDesigner.

8.2.3.1 Acqiris Team and User Preferences

The User and Team preferences as defined by Agilent Acqiris must be used in order to compile
successfully the designs. This can be simply done by setting two environment variables:

HDS_USER_HOME to %AcqirisFdkRoot%\HdlDesigner\Preferences\hds_user

HDS_TEAM_HOME to %AcqirisFdkRoot%\HdlDesigner\Preferences\hds_team

The Team and User preferences are set to recognize the programs listed hereafter. These programs run
automatically when necessary from within HdlDesigner. This is true only if the path for the executable is
added to the window environment variable PATH.

Microsoft WORD, EXCEL, and POWERPOINT as well as ACROBAT, CORELDRAW, and ULTRA-
EDIT.

8.2.3.2 Project File / Library Mapping

HdlDesigner has the concept of Project File and Shared Project File. The Project File defines all project
specific libraries while the Shared Project File defines libraries that are shared by multiple projects. A
good example of a specific library is the library ac240_fdk while the best example of a shared library is
the test bench library acq_lib.

FDK Reference Manual Page 149 of 165

The library mapping is included in the project files. The mapping is a list of paths indicating to Hdl
Designer where the files associated with a library are. This includes paths for design files and paths for
the downstream tools working directories.

As the path for the Shared Project File is defined within the Project File, we only need to load the Project
File to get the settings for all Design libraries.

Library Mapping File Location

Shared Project File $AcqirisFdkRoot/HdlDesigner/Mapping/FDK_Name_shared.hdp

Project File $AcqirisFdkRoot/HdlDesigner/Mapping/FDK_Name.hdp

FDK_Name stands for the main fdk library. For the ac240 FDK, this will be “ac240_fdk”.

8.2.4 Simulation with Modelsim

The FDK installation includes the Agilent Acqiris libraries already compiled for the currently supported
version of Modelsim. As Agilent does not issue a CD for each new Modelsim version, the customer shall
recompile the libraries when using a newer Modelsim version.

Modelsim can be started from the HdlDesigner gui. The simulation resolution shall be set to 1ps.

Once the design is loaded, you shall start the simulator by running it for the desired time: “run 100 us”.
You might then follow the queries of the Acqiris Test Bench. The test results are displayed in the
transcript window. Please refer to the description of the Acqiris Test Bench for more information.

8.2.5 Synthesis with Precision Synthesis

The FDK installation has the Base Design already synthesized for the currently supported version of
Precision Synthesis. Precision Synthesis should be started from HdlDesigner as parameterized below.

In the General tab of the Precision Synthesis Settings interface, you must activate the option “Include
SDC Constraint files”. The synthesis constraint file in the Design Side Data will be used for synthesis.

FDK Reference Manual Page 150 of 165

In the Setup tab of the Precision Synthesis Settings interface, you should activate the option “Overwrite
implementation folder”. We select this option in order to have the edif and ucf files created by Precision
Synthesis always at the same location. This is convenient when ISE is configured to point to these two
files.

FDK Reference Manual Page 151 of 165

In the User Script tab of the Precision Synthesis Settings interface, you must activate the option “Run this
script after processing” and you must select the correct script file. The script file depends on which Base
Design will be synthesized. It is located in the Design Side Data directory of the Base Design, in the
folder “/Synthesis/Constraints”.

The synthesis will automatically run and save the EDIF and UCF file for ISE. While the EDIF file is
always the design entry for ISE, the ucf file to use could be different than the ucf file generated by
Precision Synthesis. Details are indicated in the chapter VHDL libraries.

8.2.6 Synthesis with XST (ISE)

XST could be launch directly from HdlDesigner. This flow is not supplied with the FDK installation.

8.2.7 Implementation with ISE

The ISE-EDIF implementation shall be used if the design was synthesized with Precision Synthesis. This
is described hereafter in the paragraph specific to the design implementation with ISE.

8.3 Design Flow without HdlDesigner

The directory structure is designed for the use of HdlDesigner. It is recommended that non HdlDesigner
users read section 8.2 DESIGN FLOW WITH HDLDESIGNER prior to read this one.

8.3.1 Block Diagram

The more simple design flow will uses a text editor, Modelsim, and ISE Foundation with the XST
synthesizer. Synthesis with Precision Synthesis is also possible.

FDK Reference Manual Page 152 of 165

8.3.2 Simulation with Modelsim

The file modelsim/modelsim.ini should be used to configure Modelsim. This includes the preferences and
the library definitions.

8.3.3 Synthesis with Precision Synthesis

Developers should use the two files below to configure Precision Synthesis:

$AcqirisFdkRoot/lib_projects/Developer_Library/precision/Base_Design_struct/hds/add_files.tcl

$AcqirisFdkRoot/lib_projects/Developer_Library/precision/Base_Design_struct/hds/precision.tcl

Developer_Library stands for the delivered developer library. In case of the ac240 FDK this is the library
ac240_developer_lib .

Base_Design stands for the delivered Base Designs. In case of the ac240 FDK this can be either ac240,
ac210 or ac240_ddr.

The script add_files.tcl is executed from the script precision.tcl. These two scripts include references to
design files using absolute paths. You should modify them prior of use. The absolute path E:/FPGA shall
be replaced by the value you set for the variable $AcqirisFdkRoot.

8.4 Design Implementation with ISE

We distinguish two ISE implementation paths: the EDIF path for which the synthesis is done with an
external synthesizer like Precision Synthesis and the VHDL path for which the synthesis is done with
XST, the Xilinx synthesizer.

As the input files for the EDIF path and the VHDL path are different, we created two separate ISE
projects. The ISE project files for the EDIF path are stored in the directory ise while the ISE project files
for the VHDL path are stored in the directory xst . We created one ISE project for each Base Design,
this leads to 6 ISE projects (3 base designs x 2 paths). Using these project files ensures that you get all
the correct settings.

Acqiris Libraries
ModelSim compilation

& Simulation

Text Editor

ModelSim

Precision Synthesis
XST

Test Script

Functionnal Verification

Synthesis

Design Change

Simulation OK
or

Check Design for Synthesis

Post-Synthesis
Simulation

Customer Design
Customer Libraries

SDC
Timing Constraint

VHDL Text Libraries

Simulation OK / Synthesis Check

UCF
Timing Constraint ISE - Foundation Post-Place & Route

Simulation

ChipScope

Chipscope Core Insertion
when necessary

Bitfile Generation
Run Application

Design Change

Xilinx Libr

FDK Reference Manual Page 153 of 165

 The configuration for the ISE Translate, Map, Place-and-Route, and Generate-Programming-File
processes are identical for both the EDIF and the VHDL flows.

8.4.1 Cores Directory

There is Side Data for each component with a non-VHDL description like the EDIF and/or the NGC
format. This is the case for cores or components generated with the Xilinx core generator. These EDIF
and/or NGC files are copied to a common directory, the directory cores of the developer library. The
delivered ISE projects are configured to search for files in this directory.

8.4.2 Synthesis with XST (ISE)

The ISE project file points to the vhdl files of the fdk libraries (vhdl files located in the directories hdltext
of the fdk libraries). Any change in these files is detected, requiring the flow to be re-run.

8.4.3 Property Settings for ISE-XST

The Optimization Goal property must be set to speed and the Optimization Effort property to High. The
Cores Search Directories property must be set to the cores directory. The custom compile file list
add_files.txt must be used.

FDK Reference Manual Page 154 of 165

The FSM Encoding Algorithm property must be set to One-Hot.

The property Add I/O Buffers must be unset. The Max Fanout property must be set to 500.

FDK Reference Manual Page 155 of 165

8.4.4 Properties Settings for ISE-Translate

The Macro Search Path property must be set to the cores directory.

8.4.5 Properties Settings for ISE-Map

Mapping the design must be run with the Timing-Driven property set and with an effort level set to high.
The Optimization Strategy property must be set for speed.

FDK Reference Manual Page 156 of 165

8.4.6 Properties Settings for ISE-Place and Route

8.4.7 Properties Settings for ISE-Bit file Generation

We use all default properties except for the “Drive Done Pin High“ property which must be set.

FDK Reference Manual Page 157 of 165

8.5 ChipScope

The module could be connected to Xilinx ChipScope using the Xilinx Platform Cable USB and an
adapter delivered by Agilent.

8.6 FPGALook

FPGALook is a program used to add a header at the beginning of a bit file. This header has predefined
fields that can be modified with FPGALook. These fields can be read with the Acqiris Driver function
Acqrs_getInstrument Info.

The following fields must be filled as indicated below:

Compilation Date: This field is automatically inserted and read from other portions of the bit file.

Techno: Name of the target technology

Model: reference of the target

Target List: block shall be 0, device shall be 0.

Contents of the others fields are up to the Firmware Developer.

8.7 Version History

Date FDK Version Comments

September 05 Beta 4 Modify path for modelsim compiled files of Xilinx
libraries, uses the $XILINX environment variable and the
default path defined by ise.

May06 Beta7 Reviewed the entire chapter, add information for the XST
flow.

January 07 1.0 New SC240 Base Design

FDK Reference Manual Page 158 of 165

9. VHDL libraries
The FDK uses components from Acqiris or Xilinx standard libraries

The purpose here is to briefly describe the libraries and their key components.

9.1 Delivered Libraries

The FDK installer will install the VHDL libraries listed in the table below.

Library Name Purpose

AcqirisFdkRoot/lib_projects/…

ac240_developer_lib Library for developing new firmware for the AC2x0 / SC2x0
products

ac240_fdk Acqiris library: components specific to the FDK of the AC2x0 /
SC2x0 products. This library shall not be modified

cpld_sc240 Acqiris library: On board Local Bus control and digitizer control

ddr_ctrl_virtex2 Acqiris library: DDR interface core

AcqirisFdkRoot/lib_common/…

std_lib Acqiris library: common components for basic functions

std_xilinx Acqiris library: common Xilinx components

acq_lib Acqiris library: common test bench components

fdk_lib Acqiris library: common FDK components

fdk_lib_h Acqiris library: common FDK cores

AcqirisFdkRoot/lib_component/…

cypress Acqiris library: SRAM simulation model based on the cypress model

samsung_ddr Acqiris library: DRAM simulation model based on the Samsung
model

9.2 Xilinx Libraries

The Xilinx libraries are not installed by the install program because of their size (>~100 MB). Developers
have to generate them with ISE. The installation procedure is described hereafter.

The HdlDesigner mapping should be modified if the simulator is the modelsim SE version.

9.2.1 HdlDesigner Library Mapping

The HdlDesigner mapping uses the default path defined by ISE for modelsim PE and modelsim SE. In
case developers use modelsimSE, the HdlDesigner mapping should be modified to point to the file for
modelsim se.

Libraries Purpose Location ModelSim

Xilinx Compiled libraries

$Xilinx/vhdl/mti_pe/unisim PE unisim Xilinx library for
functional simulation $Xilinx/vhdl/mti_se/unisim SE

$Xilinx/vhdl/mti_pe/xilinxcorelib PE XilinxCoreLib Xilinx Cores

$Xilinx/vhdl/mti_se/xilinxcorelib SE

$Xilinx/vhdl/mti_pe/simprim PE simprim Xilinx primitives for delay
annotated simulation. $Xilinx/vhdl/mti_se/simprim SE

9.2.2 Installing the Xilinx Libraries

You shall install the Xilinx “ ip update” on top of the standard Xilinx installation in accordance to the
supported Xilinx version.

� download and install ise_81i_ip_update1.zip

FDK Reference Manual Page 159 of 165

9.2.3 Compiling the Xilinx VHDL Libraries

Follow this procedure to compile the HDL Simulation Libraries with ISE 8.1.

� Open one of the delivered projects by double clicking on one ISE project file.

� Select the FPGA in the source window (here xc2vp70-6ff1517).

� Select the Compile HDL Simulation Libraries process in the Processes window.

FDK Reference Manual Page 160 of 165

� Set the properties for Compile HDL Simulation libraries as indicated below.

� Run the Compile HDL Simulation libraries process.

The file modelsim.ini shall be adapted to simulate the MGT (Multi Gigabit Transceiver) of the SC
products. Note that the MGT simulation models are delivered as encrypted SWIFT models and the
SWIFT interface must be enabled and correctly configured to simulate these models.

The above compilation changes the file “modelsim.ini” within the installation directory of ModelSim. If
the used “modelsim.ini” file is a different one, as is the case in all modelsim directories of the FDK
libraries, the following modifications shall be applied manually to these files:

Edit the modelsim.ini file related to the top level instance of your design (the one that is used to launch
the simulation). It should be located at $AcqirisFDKRoot/ac240_developer_lib/modelsim if the design to
simulate is developed from the ac240_developer_lib library as recommended.

Set the simulator resolution to 1ps

; Simulator resolution

; Set to fs, ps, ns, us, ms, or sec with optional p refix of 1,
10, or 100.

Resolution = ps

Set the libsm and libswift variables as following:

[lmc]

; The simulator's interface to Logic Modeling's Sma rtModel SWIFT
software

libsm = $MODEL_TECH/libsm.dll

libswift=$LMC_HOME/lib/pcnt.lib/libswift.dll

…

; The simulator's interface to Logic Modeling's har dware modeler
SFI software

libhm = $MODEL_TECH/libhm.sl

9.3 Library ac240_developer_lib

As the name suggests, this library, or a copy of it, should be the design library for new firmware(s). It
contains the base designs, their test benches, and the user block core skeletons. The user block core
skeletons are already instantiated in the base designs.

FDK Reference Manual Page 161 of 165

Component Short Description

ac240_top_sysclk_ddr_tb Base Design Test Bench for vhdl simulation

ac240_top_sysclk_tb Base Design Test Bench for vhdl simulation

ac210_top_sysclk_tb Base Design Test Bench for vhdl simulation

sc240_top_sysclk_str1_tb Base Design Test Bench for vhdl simulation

ac240_top_sysclk_ddr Base Design for AC240 firmware with memory cores

ac240_top_sysclk Base Design for AC240 firmware (no memory cores)

ac210_top_sysclk Base Design for AC210 firmware (no memory cores)

sc240_top_sysclk_str1 Base Design for SC240 firmware

ac240_user_block user block skeleton for AC240 firmware

ac210_user_block user block skeleton for AC210 firmware

user_block_example Example of interfacing the input data stream. It implements the
In-Buffer of the base designs.

9.3.1 Key Components and Files

Otherwise specified, the file paths are relative to the library directory of the library
ac240_developer_lib which is $AcqirisFDKRoot/ac240_developer_lib

Comment File(s)

Specific to HdlDesigner

HdlDesigner Graphical
Design Data

./hdlgraphic/component_name/*

HdlDesigner Library
mapping for projects

../HdlDesigner/Mapping/ac240.hdp

HdlDesigner Library
mapping for shared
projects

../HdlDesigner/Mapping/ac240_shared.hdp

Base Design Test Benches Top level design for “generation”, “compilation”, and simulation:

./hdlgraphic/sc240_top_sysclk_str1_tb

./hdlgraphic/ac240_top_sysclk_ddr_tb

./hdlgraphic/ac240_top_sysclk_tb

./hdlgraphic/ac210_top_sysclk_tb

Base Design Top level design for “generation”, “compilation”, and synthesis:

./hdlgraphic/sc240_top_sysclk_str1

./hdlgraphic/ac240_top_sysclk_ddr

./hdlgraphic/ac240_top_sysclk

./hdlgraphic/ac210_top_sysclk

Base Design Tester $AcqirisFdkRoot/lib_projects/ac240_fdk/hdlgraphic/ac240_top_sysclk_tester
$AcqirisFdkRoot/lib_projects/ac240_fdk/hdlgraphic/sc240_top_sysclk_str1_tester

Acqiris Tester $AcqirisFdkRoot/lib_common/acq_lib/hdlgraphic/acqt_acqiris_tester_top

Key VHDL file

Test Benches for
Simulation

Top level design for simulation:

./hdlgraphic/sc240_top_sysclk_str1_tb_struct.vhd

./hdltext/ac240_top_sysclk_ddr_tb_struct.vhd

./hdltext/ac240_top_sysclk_tb_struct.vhd

./hdltext/ac210_top_sysclk_tb_struct.vhd

Base Designs for Synthesis Top level design for synthesis:

./hdlgraphic/sc240_top_sysclk_str1_struct.vhd

./hdltext/ac240_top_sysclk_ddr_struct.vhd

./hdltext/ac240_top_sysclk_struct.vhd

./hdltext/ac210_top_sysclk_struct.vhd

Base Design Tester $AcqirisFdkRoot/lib_projects/ac240_fdk/hdltext/ac240_top_sysclk_tester_struct.vhd
$AcqirisFdkRoot/lib_projects/ac240_fdk/hdltext/sc240_top_sysclk_str1_tester_struct.vhd

Acqiris Tester $AcqirisFdkRoot/lib_common/acq_lib/hdltext/acqt_acqiris_tester_top_struct.vhd

Functional Simulation

Test Benches Main scripts ./hdlgraphic/sc240_top_sysclk_str1_tb/struct.bd.info/Sim/Control.txt
./hdlgraphic/ac240_top_sysclk_ddr_tb/struct.bd.info/Sim/Control.txt
./hdlgraphic/ac240_top_sysclk_tb/struct.bd.info/Sim/Control.txt
./hdlgraphic/ac210_top_sysclk_tb/struct.bd.info/Sim/Control.txt

FDK Reference Manual Page 162 of 165

preference for modelsim ./modelsim/modelsim.ini

Precision Synthesis

Precision Synthesis script
and setup

These scripts are generated by HdlDesigner and contain several absolute pathnames. Non
HdlDesigner users must adapt these pathnames.

./precision/sc240_top_sysclk_str1_struct/hds/precision.tcl

./precision/ac240_top_sysclk_ddr_struct/hds/precision.tcl

./precision/ac240_top_sysclk_struct/hds/precision.tcl

./precision/ac210_top_sysclk_struct/hds/precision.tcl

Add file script These scripts are generated by HdlDesigner and contain several absolute pathnames. Non
HdlDesigner users must adapt these pathnames.

./precision/sc240_top_sysclk_str1_struct/hds/add_files.tcl

./precision/ac240_top_sysclk_ddr_struct/hds/add_files.tcl

./precision/ac240_top_sysclk_struct/hds/add_files.tcl

./precision/ac210_top_sysclk_struct/hds/add_files.tcl

Precision Synthesis config. ./hdlgraphic/sc240_top_sysclk_str1/struct.bd.info/Synthesis/Constraints/precision.tcl
./hdlgraphic/ac240_top_sysclk_ddr/struct.bd.info/Synthesis/Constraints/precision.tcl
./hdlgraphic/ac240_top_sysclk/struct.bd.info/Synthesis/Constraints/precision.tcl
./hdlgraphic/ac210_top_sysclk/struct.bd.info/Synthesis/Constraints/precision.tcl

Constraint file Pad location constraints and timing constraints. Precision Synthesis will translate these constraints
to ucf format and generate the output ucf file for ISE.

./hdlgraphic/sc240_top_sysclk_str1/struct.bd.info/Synthesis/Constraints/sc240_top_str1_struct.sdc

./hdlgraphic/ac240_top_sysclk_ddr/struct.bd.info/Synthesis/Constraints/ac240_top_struct.sdc

./hdlgraphic/ac240_top_sysclk/struct.bd.info/Synthesis/Constraints/ac240_top_struct.sdc

./hdlgraphic/ac210_top_sysclk/struct.bd.info/Synthesis/Constraints/ac240_top_struct.sdc

Edif output The netlist file generated by Precision Synthesis in EDIF format for ISE:

./precision/sc240_top_sysclk_str1_struct/sc240_top_sysclk_str1_struct/sc240_top_sysclk_str1.edf

./precision/ac240_top_sysclk_ddr_struct/ac240_top_sysclk_ddr_struct/ac240_top_sysclk_ddr.edf

./precision/ac240_top_sysclk_struct/ac240_top_sysclk_struct/ac240_top_sysclk.edf

./precision/ac210_top_sysclk_struct/ac210_top_sysclk_struct/ac210_top_sysclk.edf

Ucf output The constraint file generated by Precision Synthesis in Xilinx UCF format for ISE:

./precision/sc240_top_sysclk_str1_struct/sc240_top_sysclk_str1_struct/sc240_top_sysclk_str1.ucf

./precision/ac240_top_sysclk_ddr_struct/ac240_top_sysclk_ddr_struct/ac240_top_sysclk_ddr.ucf

./precision/ac240_top_sysclk_struct/ac240_top_sysclk_struct/ac240_top_sysclk.ucf

./precision/ac210_top_sysclk_struct/ac210_top_sysclk_struct/ac210_top_sysclk.ucf

Project file ./precision/sc240_top_sysclk_str1_struct/sc240_top_sysclk_str1_struct.psp
./precision/ac240_top_sysclk_ddr_struct/ac240_top_sysclk_ddr_struct.psp
./precision/ac240_top_sysclk_struct/ac240_top_sysclk_struct.psp
./precision/ac210_top_sysclk_struct/ac210_top_sysclk_struct.psp

ISE cores for all flows

NGC and EDIF file for
subparts

NGC and EDIF files for pre-synthesized parts like the coregen component:

./cores/*

ISE EDIF flow for synthesis with Precision Synthesis

ISE Project file ./ise/sc240_str1/sc240_str1.ise
./ise/ac240_ddr/ac240_ddr.ise
./ise/ac240/ac240.ise
./ise/ac210/ac210.ise

Constraint File Otherwise notified here, the constraint file to use is the UCF constraint file generated by Precision
Synthesis (see above).

For the ac240 base design with the memory option, the following file shall be used:

./ise/ac240_ddr/ac240_ddr.ucf

Netlist File The EDIF netlist generated by Precision Synthesis shall be used (see above)

ISE VHDL flow for synthesis with XST

ISE Project file ./xst/ac240_ddr/ac240_ddr.ise
./xst/ac240/ac240.ise
./xst/ac210/ac210.ise

Constraint File For the base designs without the memory option, the constraint file to use is the UCF constraint file
generated by Precision Synthesis (see above)

For the base design with the memory option the following file shall be used:

./xst/ac240_ddr/ac240_ddr.ucf

9.4 Library ac240_fdk

This is the main library specific for the ac240 and ac210. In order to simplify upgrades to newer fdk
versions, a developer must never modify this library.

FDK Reference Manual Page 163 of 165

New firmware shall be developed in the developer’s library where the Acqiris Test Bench, the top level
design, and the user core skeletons have already been copied.

 Main component:

Component Short Description

ac240_top_sysclk_ddr_tb Base Design Test Bench for vhdl simulation

ac240_top_sysclk_tb Base Design Test Bench for vhdl simulation

ac210_top_sysclk_tb Base Design Test Bench for vhdl simulation

sc240_top_sysclk_str1_tb Base Design Test Bench for vhdl simulation

ac240_top_sysclk_ddr Base Design for AC240 firmware with memory cores

ac240_top_sysclk Base Design for AC240 firmware (no memory cores)

ac210_top_sysclk Base Design for AC210 firmware (no memory cores)

sc240_top_sysclk_str1 Base Design for SC240 firmware

ac240_top_sysclk_tester Tester for all AC2x0 base designs

sc240_top_sysclk_str1_tester Tester for the SC240 base design

str1_example Example of generating frame and streaming data to the
ODL of a SC240.

9.4.1 Key Components and Files

The structure and files are identical to those of the library ac240_developer_lib. Only the design files are
included; there are no downstream files, either for synthesis or for simulation.

9.5 Library fdk_lib

This is the library for common component shared between multiple FDKs. The table below is an abstract
of the available components or cores. The components listed as a “Core” in the table below are
described in the Chapter FDK Core Library. Only components listed in the table to be part of “This FDK”
should be used.

Component This

FDK

Core Short Description

DE_BUFFER ���� 4 Ram blocks to implement the DE-Buffer.
128+16 bit wide Input port

128+16 bit wide output port

de_chip_io ���� Xilinx IO primitives for the core de_interface_*,
single channel

de_controller ���� State machine for de_interface startup

de_data_mix_8 ���� Convert to signed an 8-bit vector

de_dataformat ���� Format the data in the stream, with pipeline.
Signed / Unsigned. Convert gray to binary.

de_dff_r_8 ���� Constrained 8-bit dff with reset

DE_IBTARGET_IND_4_8X32 ���� State machine controlling IB-BUS reading or
writing from/to the DE-Buffer

de_interface_1ch ���� ���� 1 channel Interface for data input from the ADC
de-multiplexer.

de_interface_2ch ���� ���� 2 channel Interface for data input from the ADC
de-multiplexer

de_interface_2ch_rg ���� ���� 2 channel Interface for data input from the ADC
de-multiplexer for the SC240 with the high
resolution trigger core

de_rd_mux ���� Mux for DE-Buffer to IB-BUS readout

de_stream_start ���� Glue logic for de_interface control

FDK Reference Manual Page 164 of 165

lb_chip_io ���� Xilinx IO primitives for the core lb_interface

lb_cpld ���� -- actually unused

lb_ibtarget_bram_4_8x32 ���� State machine controlling IB-BUS reading or
writing from/to the IN-Buffer

lb_ibtarget_io_base ���� Example implementing a single 32-bit register

lb_ibtarget_io_base2x ���� Example implementing a dual 32-bit register

lb_ibtarget_io_base3x ���� Example implementing a triple 32-bit register

lb_ibtarget_io_base4x ���� Example implementing a quad 32-bit register

lb_interface_m ���� ���� A wrapper to the core lb_interface of the library
fdk_lib_h. A synthesized edif version is
delivered for “Place and Route”

slc_controller ���� ���� A wrapper to the core slc_controller of the
library fdk_lib_h. A synthesized edif version is
delivered for “Place and Route”

9.6 Library fdk_lib_h

Not described in details. This library contains the design files for the Local Bus interface. Versions and
changes will not be documented unless a major change seriously affects customer designs.

9.7 library std_lib

Not described in details. Basic logic functions. The name of a component informs the developers on its
function. Any developer could use it. See the file(s) for details. Versions and changes will not be
documented unless a major change seriously affects customer designs.

9.8 Library acq_lib

Not described in details, only a short description is given here:

Component Short Description

ACQT_ACQIRIS_TESTBENCH Test bench for acqt_acqiris_tester

acqt_acqiris_testbench_lb Local Bus Target for test

acqt_acqiris_tester_top The main tester component. Script File parsing, signals
generation for emulation of Local Bus, MAC100 DE port,
Clock generation, and signal Probing. It performs automatic
test and reports the test results to the modelsim transcript
window.

acqt_clock_gen_interface Clock generation.

acqt_execom Get the command from the parser, dispatch the command to
the dedicated controller.

acqt_interleaver_mac Interleaver to emulate two interleaved MAC100.

acqt_ibus_interface To emulate the internal bus.

acqt_lbus_interface Local Bus control and automatic test for readings.

acqt_mac MAC100 DE port emulation

ACQT_MAC2 Additional MAC100 DE port control for interleaved
acquisition.

acqt_menu Display the simulation menu in the modelsim transcript
window, control the parsing mode of actq_parser.

acqt_parser Parse the script file, send the command to acqt_execom.

acqt_probe_interface Probe control

acqt_run Run control

acqt_sram_zbt_pipelined Zbt sram model for test

FUNCTION_LIB Package for specific acqt functions

type_def Package for definitions of acqt specific types

FDK Reference Manual Page 165 of 165

9.9 Library std_xilinx

Xilinx primitives: The complex function are mapped to use the Xilinx model from the library unisim.
Synthesis tools will recognize these components as black box.

9.10 Library cypress

Simulation model for the SRAM memory.

Component Short Description

cy_dual_port_0852 Cypress model for the dual port SDR SRAM memory chip

9.11 Library samsung_ddr

Simulation model for the DRAM memory.

Component Short Description

k4h511638b_b3 AC2x0 DDR memory Bank. It is a combination of four DDR memories

k4h511638b_b3x4 Samsung model for the DDR DRAM memory chip

9.12 Library ddr_ctrl_virtex2

Micron simulation models for the DDR memory.

Component Short Description

DDR_CTRL Top level of the DDR controller

9.13 Version History

Date FDK Version Comments

September 05 Beta 4 Added Internal Bus Port to acq_lib.acqt_acqiris_tester_top

February 06 Beta 6 Added library samsumg_ddr, cypress, ddr_ctrl_virtex2,
std_xilinx

Removed the library std_virtex2

May06 Beta7 Reviewed the entire chapter, add information for the XST
flow.

January 07 1.0 New SC240 Base Design

